For our second season of Data Brew, we will be focusing on machine learning, from research to production. We will interview folks in academia and industry to discuss topics such as data ethics, production-grade infrastructure for ML, hyperparameter tuning, AutoML, and many more.
We branch, version, and test our code, but what if we treated data like code? Tim Hunter joins us to discuss the open-source Data-Driven Software (DDS) package and how it leads to immense gains in collaboration and decreased runtime for data scientists at any organization.
See more at databricks.com/data-brew