Machine learning models that use DNA markers can estimate the age of biological samples. However, understanding why these markers change with age is challenging because it's hard to prove that these changes cause aging-related traits.
In this week’s Everything Epigenetics podcast, I speak with Kejun Ying who uses large datasets to find specific DNA markers that directly influence aging traits.
We explore his recently published study which found casual CpGs that speed up aging and others that protect against it.
Kejun and colleagues created two new models, DamAge and AdaptAge, to measure harmful and beneficial changes related to aging. DamAge, which indicates negative aging effects, is linked to several health risks, including higher chances of dying. AdaptAge, on the other hand, shows positive aging adaptations. Interestingly, only the negative changes seen in DamAge can be reversed by a process that makes aged cells young again.
The research findings provide a detailed understanding of the DNA markers that truly affect lifespan and overall health as we age. This helps us develop more accurate aging biomarkers and evaluate treatments aimed at reversing aging, improving longevity, and understanding events that speed up the aging process.
In this Everything Epigenetics episode, you’ll learn about:
Where to find Kejun:
Kejun Ying is a 4th year Ph.D. student in Harvard Medical School, Gladyshev lab. His research focuses on understanding cause of aging and develop ML-based aging biomarkers to facilitate the discovery of novel anti-aging interventions.
Where to Find Us:
Instagram
Follow us on:
Apple Podcast
Visit our website for more information and resources: everythingepigenetics.com
Thank you for joining us at the Everything Epigenetics Podcast and remember you have control over your Epigenetics, so tune in next time to learn more about how to harness this knowledge for your benefit.