Professor Xinyan Huang from Hong Kong Polytechnic University shares his expertise on battery fires and the various experimental methods researchers use to trigger thermal runaway events under controlled conditions.
• Terminology matters - "thermal runaway" more accurately describes battery failure than "ignition" as the critical reactions occur inside the cell
• Nail penetration testing is widely used but contains surprising complexities, including nail material, penetration depth, velocity and battery orientation
• Mechanical abuse tests (crushing, dropping, squeezing) simulate real-world accidents but often lack repeatability
• Thermal abuse via heating typically targets 200°C surface temperature using methods including flame exposure, electrical coils, and laser heating
• Electrical abuse through overcharging (150-200% SOC) significantly increases risk, while poor-quality charging equipment creates additional hazards
• State of charge plays a crucial role in how batteries respond to abuse tests
• New research aims to bridge the gap between micro-scale material testing and cell-level testing
Professor Huang is organising the 4th International Symposium on Lithium Battery Fire Safety (ISLBFS 2025) in Hong Kong from October 30th to November 2nd - the largest battery fire safety conference in the world.
I intended to link Xinyan's papers on batteries, but there is 19 of them!?! Let me link the most recent ones:
Cover image source: https://doi.org/10.1016/j.est.2024.111337
----
The Fire Science Show is produced by the Fire Science Media in collaboration with OFR Consultants. Thank you to the podcast sponsor for their continuous support towards our mission.