Variational Autoencoders (VAEs) are a fascinating type of deep learning model that combines neural networks with probabilistic modeling.
This podcast will guide you through the key ideas behind VAEs, including the concept of latent spaces, the Evidence Lower Bound (ELBO), and the reparameterization trick.
We'll explain the information-theoretic interpretation of the VAE objective, discuss techniques for improving the flexibility of inference models, and explore advanced generative architectures.
Online Tutorials:
#genai #levelup #level3 #learn #generativeai #ai #aipapers #podcast #deeplearning #machinelearning #vae #encoder