Ever wondered how AI systems handle images and videos, or how they make lightning-fast recommendations? Tune in as Nicolay chats with Zain Hassan, an expert in vector databases from Weaviate. They break down complex topics like quantization, multi-vector search, and the potential of multimodal search, making them accessible for all listeners. Zain even shares a sneak peek into the future, where vector databases might connect our brains with computers!
Zain Hasan:
Nicolay Gerold:
Key Insights:
Key Quotes:
Chapters
00:00 - 01:24 Introduction
01:24 - 03:48 Underappreciated aspects of vector databases
03:48 - 06:06 Quantization trade-offs and techniques
06:06 - 08:24 Binary quantization
08:24 - 10:44 Product quantization and other techniques
10:44 - 13:08 Quantization as a "superpower" to reduce costs
13:08 - 15:34 Comparing quantization approaches
15:34 - 17:51 Placing vector databases in the database landscape
17:51 - 20:12 Pruning unused vectors and nodes
20:12 - 22:37 Improving precision beyond similarity thresholds
22:37 - 25:03 Multi-vector search
25:03 - 27:11 Impact of vector databases on data interaction
27:11 - 29:35 Interesting and weird use cases
29:35 - 32:00 Future of multimodal search and recommendations
32:00 - 34:22 Extending recommendations to user data
34:22 - 36:39 What's next for Weaviate
36:39 - 38:57 Exciting technologies beyond vector databases and LLMs
vector databases, quantization, hybrid search, multi-vector support, representation learning, cost reduction, memory optimization, multimodal recommender systems, brain-computer interfaces, weather prediction models, AI applications