Sveriges mest populära poddar

Large Language Model (LLM) Talk

LLM Post-Training: Reasoning

22 min • 17 mars 2025

LLM post-training is crucial for refining the reasoning abilities developed during pretraining. It employs fine-tuning on specific reasoning tasks, reinforcement learning to reward logical steps and coherent thought processes, and test-time scaling to enhance reasoning during inference. Techniques like Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) prompting, along with methods like Monte Carlo Tree Search (MCTS), allow LLMs to explore and refine reasoning paths. These post-training strategies aim to bridge the gap between statistical pattern learning and human-like logical inference, leading to improved performance on complex reasoning tasks.

Kategorier
Förekommer på
00:00 -00:00