"Superbug" is shorthand for multi-drug resistant bacteria. Infections with superbugs are the most difficult to treat, because these bacteria have evolved ways of evading multiple — and sometimes all! — of our available antibiotics. This multi-drug resistance can arise in the bacteria that are causing disease, meaning doctors have to find new ways to treat the infection, but also in the bacteria that harmlessly live in our gastrointestinal tract. Critically, if these gut bacteria become superbugs, they can spread resistance throughout a hospital setting via fecal-oral contamination. On this episode of the Bio Eats World Journal Club, we discuss a new strategy for protecting those harmless bacteria from antibiotics while still treating the infection. Host Lauren Richardson (@lr_bio) is joined by Professor Andrew Read of Penn State University to discuss his team's work preventing resistance evolution by repurposing an old, FDA-approved drug. The conversation covers the scope of the antibiotic resistance problem, the insights that lead to the discovery of this adjuvant therapy, and the fundamentally novel nature of anti-evolution drugs.
Andrew Read, Ph.D is the director of Huck Institutes of the Life Sciences, the Evan Pugh Professor of Biology and Entomology, and the Eberly Professor of Biotechnology at Pennsylvania State University. He joins host Lauren Richardson to discuss the results and implications of the article "An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen" by Valerie J Morley, Clare L Kinnear , Derek G Sim, Samantha N Olson , Lindsey M Jackson, Elsa Hansen, Grace A Usher, Scott A Showalter, Manjunath P Pai, Robert J Woods, and Andrew F Read, published in eLife.