Matching is something we learn about in our intro to epidemiology classes and yet we probably spend little time thinking about it after that, we just do it. But when should we match and when does it help us and when does it hurt us? What do we need to consider before we match? Dr. Anusha Vable joins us to help us understand matching in detail.
For those of you looking to do more reading around matching see:
Ho, D., Imai, K., King, G., & Stuart, E. (2007). Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference. Political Analysis, 15(3), 199-236. doi:10.1093/pan/mpl013
Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313. PMID: 20871802; PMCID: PMC2943670.
Vable AM, Kiang MV, Glymour MM, Rigdon J, Drabo EF, Basu S. Performance of Matching Methods as Compared With Unmatched Ordinary Least Squares Regression Under Constant Effects. Am J Epidemiol. 2019 Jul 1;188(7):1345-1354. doi: 10.1093/aje/kwz093. PMID: 30995301; PMCID: PMC6601529.
Iacus, S., King, G., & Porro, G. (2012). Causal Inference without Balance Checking: Coarsened Exact Matching. Political Analysis, 20(1), 1-24. doi:10.1093/pan/mpr013