Thank you to all the presenters that participated. I covered as many as I could given the time and crowds, if you were not included and wish to be, please email [email protected]
More details on the official NeurIPS Deep RL Workshop site.
- 0:23 Approximating two value functions instead of one: towards characterizing a new family of Deep Reinforcement Learning algorithms; Matthia Sabatelli (University of Liege); Gilles Louppe (University of Liège); Pierre Geurts (University of Liège); Marco Wiering (University of Groningen) [external pdf link]
- 4:16 Single Deep Counterfactual Regret Minimization; Eric Steinberger (University of Cambridge).
- 5:38 On the Convergence of Episodic Reinforcement Learning Algorithms at the Example of RUDDER; Markus Holzleitner (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria); José Arjona-Medina (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria); Marius-Constantin Dinu (LIT AI Lab / University Linz ); Sepp Hochreiter (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria).
- 9:33 Objective Mismatch in Model-based Reinforcement Learning; Nathan Lambert (UC Berkeley); Brandon Amos (Facebook); Omry Yadan (Facebook); Roberto Calandra (Facebook).
- 10:51 Option Discovery using Deep Skill Chaining; Akhil Bagaria (Brown University); George Konidaris (Brown University).
- 13:44 Blue River Controls: A toolkit for Reinforcement Learning Control Systems on Hardware; Kirill Polzounov (University of Calgary); Ramitha Sundar (Blue River Technology); Lee Reden (Blue River Technology).
- 14:52 LeDeepChef: Deep Reinforcement Learning Agent for Families of Text-Based Games; Leonard Adolphs (ETHZ); Thomas Hofmann (ETH Zurich).
- 16:30 Accelerating Training in Pommerman with Imitation and Reinforcement Learning; Hardik Meisheri (TCS Research); Omkar Shelke (TCS Research); Richa Verma (TCS Research); Harshad Khadilkar (TCS Research).
- 17:27 Dream to Control: Learning Behaviors by Latent Imagination; Danijar Hafner (Google); Timothy Lillicrap (DeepMind); Jimmy Ba (University of Toronto); Mohammad Norouzi (Google Brain) [external pdf link].
- 20:48 Adaptive Temperature Tuning for Mellowmax in Deep Reinforcement Learning; Seungchan Kim (Brown University); George Konidaris (Brown).
- 22:05 Meta-learning curiosity algorithms; Ferran Alet (MIT); Martin Schneider (MIT); Tomas Lozano-Perez (MIT); Leslie Kaelbling (MIT).
- 24:09 Predictive Coding for Boosting Deep Reinforcement Learning with Sparse Rewards; Xingyu Lu (Berkeley); Stas Tiomkin (BAIR, UC Berkeley); Pieter Abbeel (UC Berkeley).
- 25:44 Swarm-inspired Reinforcement Learning via Collaborative Inter-agent Knowledge Distillation; Zhang-Wei Hong (Preferred Networks); Prabhat Nagarajan (Preferred Networks); Guilherme Maeda (Preferred Networks).
- 26:35 Multiplayer AlphaZero; Nicholas Petosa (Georgia Institute of Technology); Tucker Balch (Ga Tech) [external pdf link].
- 27:43 Prioritized Sequence Experience Replay; Marc Brittain (Iowa State University); Joshua Bertram (Iowa State University); Xuxi Yang (Iowa State University); Peng Wei (Iowa State University) [external pdf link].
- 29:14 Recurrent neural-linear posterior sampling for non-stationary bandits; Paulo Rauber (IDSIA); Aditya Ramesh (USI); Jürgen Schmidhuber (IDSIA - Lugano).
- 29:36 Improving Evolutionary Strategies With Past Descent Directions; Asier Mujika (ETH Zurich); Florian Meier (ETH Zurich); Marcelo Matheus Gauy (ETH Zurich); Angelika Steger (ETH Zurich) [external pdf link].
- 31:40 ZPD Teaching Strategies for Deep Reinforcement Learning from Demonstrations; Daniel Seita (University of California, Berkeley); David Chan (University of California, Berkeley); Roshan Rao (UC Berkeley); Chen Tang (UC Berkeley); Mandi Zhao (UC Berkeley); John Canny (UC Berkeley) [external pdf link].
- 33:05 Bottom-Up Meta-Policy Search; Luckeciano Melo (Aeronautics Institute of Technology); Marcos Máximo (Aeronautics Institute of Technology); Adilson Cunha (Aeronautics Institute of Technology) [external pdf link].
- 33:37 MERL: Multi-Head Reinforcement Learning; Yannis Flet-Berliac (University of Lille / Inria); Philippe Preux (INRIA) [external pdf link].
- 35:30 Emergen...