Episode summary: In the heavy industry sector, the cost of unpredicted repairs or machine failures can be very expensive. For example: A cargo train with an engine failure in will incur costs from it’s own repairs, from the transit required to reach the broken down engine, and with holding up other trains and cargo in the process.
Predictive maintenance has the potential to help businesses assess the condition of vehicles, equipment and parts in order to predict when maintenance should be performed. Using data collected by sensors on machines (including vibration, temperature, and more) heavy industry companies can potentially predict which machines or parts need imminent maintenance and which machines are least likely to breakdown.
In this week’s episode, we speak with Will McGinnis, Chief Scientist of Predikto, a predictive maintenance software provider based in Atlanta. Will speaks with us about predictive maintenance applied for the improvement railways and trains equipment, and how companies in the railway sector can use predictive maintenance to coax out patterns in maintenance schedules and heavy equipment data.
Interested readers can listen to the full interview with Will here:https://www.techemergence.com/will-mcginnis-predikto-predictive-maintenance-trains-mobile-heavy-industry