Apache Flink is an open-source framework and distributed processing engine designed for data analytics. It excels at handling tasks such as data joins, aggregations, and ETL (Extract, Transform, Load) operations. Moreover, it supports advanced real-time techniques like complex event processing.
In this episode, Deepthi Mohan and Nagesh Honnalii from AWS discussed Apache Flink and the Amazon Managed Service for Apache Flink (MSF) with our host, Alex Williams. MSF is a service that caters to customers with varying infrastructure preferences. Some prefer complete control, while others want AWS to handle all infrastructure-related aspects.
Use cases for MSF can be grouped into three categories. First, there's streaming ETL, which involves tasks like log aggregation for later auditing. Second, it supports real-time analytics, enabling customers to create dashboards for tasks like fraud detection. Third, it handles complex event processing, where data from multiple sources is joined and aggregated to extract meaningful insights.
The origins of MSF trace back to the evolution of real-time data services within AWS. In 2013, AWS introduced Amazon Kinesis, while the open-source community developed Apache Kafka. These services paved the way for MSF by highlighting the need for real-time data processing.
To provide more flexibility, AWS launched Kinesis Data Analytics in 2016, allowing customers to write code in JVM-based languages like Java and Scala. In 2018, AWS decided to incorporate Apache Flink into its Kinesis Data Analytics offering, leading to the birth of MSF.
Today, thousands of customers use MSF, and AWS continues to enhance its offerings in the real-time data processing space, including the launch of Amazon MSK (Managed Streaming for Apache Kafka). To align with its foundation on Flink, AWS rebranded Kinesis Data Analytics for Apache Flink to Amazon Managed Service for Apache Flink, making it clearer for customers.
Learn more from The New Stack about AWS and Apache Flink:
Apache Flink for Real Time Data Analysis