What are the benefits of using a decoupled data processing system? How do you write reusable queries for a variety of backend data platforms? This week on the show, Phillip Cloud, the lead maintainer of Ibis, will discuss this portable Python dataframe library.
Phillip contrasts Ibis’s workflow with other Python dataframe libraries. We discuss how “getting close to the data” speeds things up and conserves memory.
He describes the different approaches Ibis provides for querying data and how to select a specific backend. We discuss ways to get started with the library and how to access example data sets to experiment with the platform.
Phillip discovered Ibis while looking for a tool that allowed him to reuse SQL queries written for a specific data platform on a different one. He recounts how he got involved with the Ibis project, sharing his background in open source and learning how to contribute to a first project.
This episode is sponsored by Mailtrap.
Course Spotlight: Creating Web Maps From Your Data With Python Folium
You’ll learn how to create web maps from data using Folium. The package combines Python’s data-wrangling strengths with the data-visualization power of the JavaScript library Leaflet. In this video course, you’ll create and style a choropleth world map showing the ecological footprint per country.
Topics:
Show Links:
Level up your Python skills with our expert-led courses: