How do you customize a LLM chatbot to address a collection of documents and data? What tools and techniques can you use to build embeddings into a vector database? This week on the show, Calvin Hendryx-Parker is back to discuss developing an AI-powered, Large Language Model-driven chat interface.
Calvin is the co-founder and CTO of Six Feet Up, a Python and AI consultancy. He shares a recent project for a family-owned seed company that wanted to build a tool for customers to access years of farm research. These documents were stored as brochure-style PDFs and spanned 50 years.
We discuss several of the tools used to augment a LLM. Calvin covers working with LangChain and vectorizing data with ChromaDB. We talk about the obstacles and limitations of capturing documentation.
Calvin also shares a smaller project that you can try out yourself. It takes the information from a conference website and creates a chatbot using Django and Python prompt-toolkit.
This episode is sponsored by Mailtrap.
Course Spotlight: Command Line Interfaces in Python
Command line arguments are the key to converting your programs into useful and enticing tools that are ready to be used in the terminal of your operating system. In this course, you’ll learn their origins, standards, and basics, and how to implement them in your program.
Topics:
Show Links:
Level up your Python skills with our expert-led courses: