What’s the big breakthrough for Natural Language Processing (NLP) that has dramatically advanced machine learning into deep learning? What makes these transformer models unique, and what defines “attention?” This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, continues our talk about how machine learning (ML) models understand and generate text.
This episode is a continuation of the conversation in episode #119. Jodie builds on the concepts of bag-of-words, word2vec, and simple embedding models. We talk about the breakthrough mechanism called “attention,” which allows for parallelization in building models.
We also discuss the two major transformer models, BERT and GPT3. Jodie continues to share multiple resources to help you continue exploring modeling and NLP with Python.
Course Spotlight: Building a Neural Network & Making Predictions With Python AI
In this step-by-step course, you’ll build a neural network from scratch as an introduction to the world of artificial intelligence (AI) in Python. You’ll learn how to train your neural network and make predictions based on a given dataset.
Topics:
Show Links:
Level up your Python skills with our expert-led courses: