How do you prepare a dataset for machine learning (ML)? How do you go beyond cleaning the data and move toward measuring how the model performs? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to talk about strategies for better ML model performance.
Jodie starts by defining some terms for the conversation. We talk about targets, features, and supervised learning.
We discuss three common ways that data can alter model performance and which Python tools can help spot and avoid them. Jodie shares personal experiences of working through these pitfalls. We also share a healthy collection of resources to explore and learn more.
Course Spotlight: Combining Data in pandas With concat() and merge()
In this video course, you’ll learn two techniques for combining data in pandas: merge() and concat(). Combining Series and DataFrame objects in pandas is a powerful way to gain new insights into your data.
Topics:
classification_table
Show Links:
Level up your Python skills with our expert-led courses: