Sveriges mest populära poddar

The Uptime Wind Energy Podcast

Inside Power Curve Testing with ArcVera Renewables

29 min • 7 mars 2024
Allen and Joel discuss power curve testing with John Bosche, co-founder of ArcVera Renewables and member of the IEC technical committee that sets the global 61400-12-1 standard. He breaks down the nitty-gritty details and complex requirements for accurately measuring a wind turbine's all-important power performance. Visit https://www.arcvera.com/ Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Pardalote Consulting - https://www.pardaloteconsulting.comWeather Guard Lightning Tech - www.weatherguardwind.comIntelstor - https://www.intelstor.com Allen Hall: Welcome to the special edition of the Uptime Wind Energy Podcast. I'm your host, Allen Hall, along with co host, Joel Saxum. A wind turbine's power curve is key to a revenue generating wind farm. We have not discussed power curve measurements on the podcast before, even though we do. Run across them all the time. And we thought it was due time to bring in an expert. And our guest today is John Bosch, co founder and president of ArcVera Renewables, who represents the U S and as an expert on the IEC tech committee, which maintains the IEC 61400 12 1 standard for power performance testing, John also participates on the IEC. Tech advisory group that votes on us positions regarding all standards and John has spent a long career in the wind industry. He's worked in wind since 1990 and. Back in 2001, he founded Chinook Wind up in Washington State, and Chinook merged with VBAR Greg Poulos, in 2017 to form ArcVera Renewables that everybody knows. John, welcome to the program. John Bosche: Hey, thanks, Allen. Thanks, Joel. It's good to be here with you today. Allen Hall: So we're trying to understand the power curve. So we talk about it all the time, but we've never been involved in a measurement of it. And I know when we travel around and go visit wind sites, everybody just assumes that, Oh, a power curve is this, and there's a plot and we get it from GE or Vestas, whoever we get it from. And here's this magical thing. And all our lives depend on it and that the wind turbines are producing this amount of power with that amount of wind. But how is, I would like to learn, like, how is that created and how is that validated? Because those are two things I just don't understand yet. John Bosche: The power curve in some ways really is the most important part of the power curve. It's what at ArcVera, we say the arc in arc vera is connecting the meteorology part, which is what Greg does to the the power curve, which turns that meteorology into energy. And and I, not just the power curve, but the machinery in general, so the power curve really is that important bridge of, converting the wind into. Into energy. It edits. At its heart, it's a very simple concept. At a given wind speed, there's a certain amount of power you expect and, at different, at the next higher wind speed, it's a little more power and up until you hit rated power. It's, you could say it's equivalent to the EPA mileage when you buy a car you expect it's going to get whatever 36 miles to the gallon or something. And of course then your mileage may vary and there's never a guarantee or a warranty on the mileage with the car. With wind turbines, you do get a warranty from the turbine vendor. They guarantee the power curve. But in order to enforce that guarantee, you have to actually go measure the power curve. If you don't measure it, then it's just deemed that the wind turbine meets that power curve. And if you're disappointed later down the road, five years or something.
Förekommer på
00:00 -00:00