103 avsnitt • Längd: 55 min • Oregelbundet
Im AstroGeo Podcast erzählen sich die Wissenschaftsjournalisten Franziskia Konitzer und Karl Urban alle zwei Wochen eine Geschichte, die ihnen entweder die Steine unseres kosmischen Vorgartens eingeflüstert – oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben. Es sind wahre Geschichten aus Astronomie und Astrophysik, Geologie und Geowissenschaften.
The podcast AstroGeo – Geschichten aus Astronomie und Geologie is created by Karl Urban und Franziska Konitzer. The podcast and the artwork on this page are embedded on this page using the public podcast feed (RSS).
Im Jahr 1655 entdeckt der niederländische Astronom Christiaan Huygens mit seinem selbstgebauten Teleskop einen Lichtpunkt, der den Planeten Saturn in 16 Tagen einmal umrundet. Er wird später Titan getauft. Es dauerte mehrere Jahrhunderte, bis klar wurde, was der zweitgrößte Mond des Sonnensystems verbirgt: Erst Raumsonden lieferten Details seiner umwölkten Atmosphäre und sogar erste Fotos seiner rätselhaften Oberfläche. Gerade bereitet die NASA eine neue Forschungsreise zu ihm vor.
Karl erzählt in dieser Folge, warum der Titan so besonders ist. Zwar ist es auf ihm mit durchschnittlich -179 °C bestialisch kalt. Doch gleichzeitig gluckern auf ihm Flüsse aus flüssigem Methan, Ethan und Stickstoff. Sie graben tiefe Täler und speisen gigantische Seen. Aus der Atmosphäre, die deutlich dichter und massiver als die Erdatmosphäre ist, rieseln währenddessen organische Moleküle. Es scheinen die wichtigsten Zutaten beisammen zu sein, um auf Titan eine Form von Leben entstehen zu lassen.
Nach der Marssonde Ingeniuity ist Dragonfly erst der zweite Versuch der NASA, in einer außerirdischen Atmosphäre mit einem Helikopter zu fliegen. Doch anders als die dünne Luft auf dem Mars ist der Titan bestens dafür geeignet: Die Anziehungskraft ist gering, während die Luft auf dem Saturnmond dichter als die der Erde ist und dadurch starken Auftrieb verleiht. Die Forschungssonde kann deshalb eine Radionukludbatterie und sogar ein Massenspektrometer transportieren, um in einer mehrjährigen Mission dem möglichen fremden Leben auf die Schliche zu kommen.
Episodenbild: NASA/JPL-Caltech
Diese Folge beschäftigt sich mit dem Feedback zu unseren Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Dieses Mal sprechen wir noch einmal ausgiebig über das Massensterben im Devon, an dem vielleicht die Bäume schuld waren. Es geht darum, ob zu diesem erdgeschichtlichen Ereignis eigentlich zu wenig oder hierzulande sogar schon zu viel geforscht wurde. Wir sprechen auch über die Suche nach der stellaren Parallaxe, die über Jahrtausende viele Astronominnen und Astronomen beschäftigt hat. Und wir gehen intensiv auf das Feedback unserer Hörerinnen ein, das erfreulich häufig bei uns eintrifft, wenn auch tendenziell auf anderen Wegen als das unserer männlichen Hörer.
Und sie bewegt sich doch: Diese geflügelten Worte werden Galileo Galilei zugeschrieben. Ob er sie je geäußert hat, ist zwar fraglich – doch dass er ihnen zugestimmt hätte, steht außer Zweifel. „Sie“ ist unsere Erde. Jahrtausendelang hatte das geozentrische Weltbild sie starr und unbewegt in das Zentrum des Universums gesetzt: Alle übrigen Planeten, die Sonne, der Mond und der Fixsternhimmel sollten sich um sie drehen.
Galileo Galilei hingegen hat als früher Verfechter ein heliozentrisches Weltbild vertreten: eines, dass die Erde von ihrem Ehrenplatz im Mittelpunkt des Universums schubst und an diese Stelle die Sonne setzt. Demnach würde sich die Erde um die Sonne drehen – und sich eben doch bewegen. Heutzutage wissen wir, dass Galilei und andere frühe Vertreter dieses Weltbilds Recht behalten sollten – nur: Wie konnten sie überhaupt beweisen, dass sich die Erde um die Sonne dreht?
In dieser Folge von AstroGeo erzählt Franzi die Geschichte einer Suche, die Jahrtausende gedauert hat: die nach der stellaren Parallaxe. Diese scheinbare Bewegung von Sternen im Laufe eines Erdjahres ist nicht nur ein Beleg dafür, dass sich die Erde um die Sonne dreht – sie ist bis heute die einzige Möglichkeit, die Entfernung zu Sternen direkt zu vermessen und damit die Grundlage so ziemlich all unseres Wissens über den Weltraum und unser Universum.
Episodenbild: ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Brown, S. Jordan, T. Roegiers, X. Luria, E. Masana, T. Prusti and A. Moitinho
Auf einer Wanderung durch den Harz entdeckt der Geologe und Botaniker Friedrich Adolph Roemer im Jahr 1850 eine merkwürdige Gesteinsfolge. Es sind dicke graue Kalkbänke, die durch viel dünnere und schwarze Kalklagen durchbrochen sind. Kalkstein ist fast nie schwarz – und ist er es doch, spricht seine Färbung für eine Katastrophe.
Karl erzählt in dieser Folge von dem wohl merkwürdigsten Massensterben der Erdgeschichte. Bis heute haben Fachleute nur ein lückenhaftes Bild davon, was damals, vor rund 372 Millionen Jahren, begann. Sie wissen, dass damals weltweit die Meeresriffe starben und dass das Klima über viele Millionen Jahre äußerst instabil war. Viele Ursachen sind dafür im Gespräch – aber am wahrscheinlichsten scheint der Erfolg einer Gruppe von Organismen, die wir heute mit vielen Dingen in Verbindung bringen, aber nicht mit einem Weltuntergang: Es sind Pflanzen – und darunter vor allem die Bäume.
Die Geschichte rund um das Massensterben im späten Devon ist komplex, weshalb es insgesamt acht Merkwürdigkeiten zu erzählen gibt. Und obwohl uns diese Zeit fremd erscheint, hat eine Merkwürdigkeit auch mit uns zu tun.
Episodenbild: Fiddlehead in Macro Shot Photography / Pexels
In dieser Episode geht es wieder um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Dieses Mal sprechen wir über das Ende des Urknalls und die Grenzen der Vorstellung. Wir stellen fest, dass die Raumfahrt die Atmosphäre nicht nur theoretisch, sondern messbar verunreinigt. Wir sprechen über die Unzulänglichkeiten der Nobelpreise und darüber, welche Themen wir hier lieber nicht behandeln wollen.
Bildquelle: K. Urban / ChatGPT; ESA and the Planck Collaboration
Es war einmal: der Urknall. Nachdem unser Universum wohl irgendwie entstanden war und Wissenschaftlerinnen und Wissenschaftler herausgefunden hatten, dass es überhaupt einen Anfang gegeben hat, fanden sie auch heraus, dass die allerersten Elemente im Universum kurz nach dem Urknall entstanden sind, vor allem Wasserstoff und Helium. Doch wie ging es dann weiter?
Nun folgt das Ende des Anfangs: Es half dabei, dem Urknall-Modell zum wissenschaftlichen Durchbruch zu verhelfen. Dabei handelt es sich um ein Überbleibsel des Urknalls, das bis heute den ganzen Kosmos durchdringt – und dessen Entdeckung absoluter Zufall war: die kosmische Mikrowellenhintergrundstrahlung.
Episodenbild: ESA and the Planck Collaboration
Am 9. Oktober 2022 registrieren Weltraumteleskope ein gewaltiges Ereignis tief im Kosmos: einen Gammablitz im Sternbild Pfeil, bei dem so viel hochenergetische Gammastrahlung abgegeben wird wie nie zuvor beobachtet. Dieses Ereignis war nicht nur von astronomischem Interesse, denn die ankommende Strahlung ließ kurzzeitig sogar geladene Teilchen in den obersten Schichten der Erdatmosphäre verrückt spielen. Störsignale im Radiobereich waren die Folge – und das trotz einer Entfernung von 2,4 Milliarden Lichtjahren.
Karl erzählt in dieser Folge, ob solche Ereignisse in größerer Nähe zu unserem Planetensystem das Leben auf der Erde beeinträchtigen könnten. Es geht wieder mal um Massensterben in der geologischen Geschichte – und wie neue Methoden aus Physik und Astrophysik helfen können, diese erdgeschichtlichen Kriminalfälle aufzuklären. Denn zurzeit machen solche Verfahren große Fortschritte. Die Asche vor langer Zeit explodierter Sterne wurde bereits in alten Sedimentschichten gefunden – und in einem Fall sogar einer Sternenleiche zugeordnet.
Weiterhören bei AstroGeo
Weiterführende Links
Quellen
Episodenbild: K. Urban / ChatGPT
In dieser Episode geht es wieder um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.Dieses Mal sprechen wir über die gedankenverknotende Expansion des Universums und warum das junge Universum nicht gleich nach seiner Entstehung zu einem Schwarzen Loch kollabiert ist.
Außerdem geht es darum, wie verglühende Satelliten helfen können, Flugbahn und Masse vorher unbekannter Meteoriten zu bestimmen. Wir sprechen auch über unsere Art, True Science-Geschichten zu erzählen und über unsere englischsprachigen Töne. Und zwischendurch geht es auch um Franzis Eichhörnchen, die ihren Balkon – und ihr Herz! – fest in ihren Krallen haben.
Am 22. Februar 2018 starten zwei unscheinbare Satelliten in eine Umlaufbahn: Sie sind weder besonders groß, noch auf andere Weise auffällig. Aber diese zwei Satelliten, die den Namen Starlink tragen, läuten einen Wandel im erdnahen Weltraum ein. Und der ist auch heute längst noch nicht abgeschlossen. Wir befinden uns mitten im Zeitalter der Megakonstellationen – von tausenden Satelliten, die viele neue Anwendungen möglich machen. Allerdings kommen diese Chancen der Raumfahrt zu einem hohen Preis.
Karl erzählt in dieser Podcastfolge von seiner Langzeitrecherche über die letzten sechs Jahre. Er wollte herausfinden, ob die Atmosphäre durch immer mehr startende Raketen und vor allem durch die stark wachsende Zahl verglühender Satelliten beschädigt werden könnte. Wieder mal geht es um die Ozonschicht: Denn jeder verglühende Satellit hinterlässt Partikel aus Aluminium, die chemische Abbaureaktionen anstoßen könnten und dadurch den planetaren Schutzschicht gegen krebserregende UV-Strahlung der Sonne beschädigen.
Episodenbild: NASA/ESA/Bill Moede and Jesse Carpenter
Der Anfang vom Anfang war gemacht: Zu Beginn des 20. Jahrhunderts hatten Wissenschaftler herausgefunden, dass unser Universum nicht ewig und unveränderlich in all seiner Pracht existiert, sondern dass es in ferner Vergangenheit zunächst entstanden ist. Dieses Ereignis bezeichnen wir heute als Urknall – aber was ist dann passiert?
In dieser Folge erzählt Franzi die Geschichte eines Physikers namens Ralph Alpher, der herausgefunden hat, wie das Weltall und alles in ihm entstanden ist: wie die Materie in unser Universum kam, allen voran die beiden häufigsten chemischen Elemente Wasserstoff und Helium. Diese Urknall-Nukleosynthese ist bis heute eine der stärksten Hinweise darauf, dass das Universum in einem unvorstellbar heißen und dichten Zustand angefangen hat – und sie verrät uns außerdem, wie lange dieser Anfang vom Allem gedauert hat.
In dieser Episode geht es wieder um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Dieses Mal sprechen wir ausgiebig über den Sound des Urknalls, der auch etwas mit Rockmusik und der Band Motörhead zu tun hat – und der Frage, ob es Bands gibt, die sogar lauter als der Urknall sind. Außerdem geht es um die Entstehung des Lebens, besonders den ersten gemeinsamen Vorfahren allen Lebens auf der Erde, LUCA. Denn vielleicht könnte der viel früher gelebt haben, als noch vor ein paar Jahren angenommen. Zuletzt kehren wir auch zur Debatte über den ersten interstellaren Besucher Oumuamua zurück – was waren eure Reaktionen zur Alien-Kontroverse um diesen mysteriösen Brocken aus dem All?
Episodenbild: Galaxie: ESA/Robert Gendler; Tiefseevulkan: CC-BY Ifremer; Komet: ESA/Hubble, NASA, ESO, M. Kornmesser
Am 25. Oktober 2017 finden Forschende in den Daten von vier Teleskopen auf Hawaii ein merkwürdiges Objekt: Es ist ein Lichtpunkt, dessen Umlaufbahn um die Sonne irgendwie seltsam ist. Schnell ist klar: Man hatte den ersten interstellaren Besucher entdeckt. Ein Komet, so vermuten die Astronomen, der aus einem anderen Sternensystem stammt.
Karl erzählt in dieser Folge die Geschichte des Objekts 1I/Oumuamua. Obwohl er nach wenigen Wochen bereits aus dem Sichtfeld der meisten Teleskope verschwunden war, konnten einige Daten über ihn gesammelt werden. Diese Daten scheinen aber bis heute nicht gut zusammenzupassen: Zwar beschleunigte Oumuamua nach seinem Vorbeiflug an der Sonne wie ein Komet, der einen Schweif bildet. Aber Teleskope fanden keinen Hinweis auf empor geschleuderten Staub oder austretendes Gas. Auch seine eigenartige Form gibt Rätsel auf, denn die ähnelt entweder einem flachen Pfannkuchen oder einer Zigarre.
Die Studienlage ist vielfältig und die Zahl der Hypothesen über den Ursprung und die Entstehung von Oumuamua ist groß. Bekannt wurde der erste interstellare Besucher allerdings durch eine Hypothese des Harvard-Physikers Avi Loeb: Er hält es bis heute für möglich, dass Oumuamua von Außerirdischen gebaut worden ist. Doch seine Herangehensweise, mit der wir uns am Ende dieser Geschichte beschäftigen, schadet der Wissenschaft vielleicht mehr, als dass sie nutzt.
Oumuamua hat möglicherweise die Form einer langgestreckten Zigarre, wie hier künstlerisch dargestellt. Als wahrscheinlicher gilt mittlerweile die eines oblaten Spheroids, also eines flachen Eierpfannkuchens. Anders als im Bild dargestellt, konnten weder Staub noch Gas eines Kometenschweifs nachgewiesen werden. Doch es könnte nicht nachweisbare Gase wie Wasser, Stickstoff oder Wasserstoff gegeben haben oder groben Staub, der ebenfalls für die genutzten Teleskope unsichtbar gewesen wäre. Deshalb haben wir uns für dieses Episodenbild entschieden.
Bildquelle: ESA/Hubble, NASA, ESO, M. Kornmesser
Es ist keine ganz einfache Frage, wohl aber eine der größten in den Naturwissenschaften: Woher stammt das Leben auf der Erde? Um uns einer Antwort zu nähern, müssen wir in flachen Tümpeln dümpeln und in die Tiefsee tauchen. Viele große Forscherïnnen haben dazu etwas beigetragen, darunter Charles Darwin, Stanley Miller oder Deborah Kelly.
Franzi und Karl nehmen in dieser Folge die Chemikerin Martina Preiner an Bord: Sie war Wissenschaftsjournalistin und Podcast-Host und wurde quasi während eines Interviews mit einem Forscher, das sie führte, zurück in die Wissenschaft geholt. Sie forschte dann in Düsseldorf sowie Utrecht und machte eine Forschungsreise zu vulkanischen Tiefseequellen. Seit 2023 entwickelt sie eigene Experimente, die den möglichen Stoffwechsel der ersten Arten nachstellen, gemeinsam mit ihren Kollegïnnen am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg.
Martina taucht mit uns tief ein in die Forschungsgeschichte zu jener großen Frage, woher das Leben stammt: Von der Spontanzeugung im 19. Jahrhundert und die Idee der flachen Tümpel über das berühmte Miller-Urey-Experiment im 20. Jahrhundert geht es bis zu Martinas eigenem Forschungsgebiet: Wie die ersten wichtigen Stoffwechsel-Prozesse des Lebens vielleicht ohne komplexe Biomoleküle stattfanden.
Unser schönes Universum, so majestätisch, so… ewig und unveränderlich? Als Albert Einstein zu Beginn des 20. Jahrhunderts seine Allgemeine Relativitätstheorie auf das gesamte Universum anwendete, gefiel ihm das Ergebnis ganz und gar nicht: Denn seine Theorie sagte ihm, dass das Universum entweder expandiert oder kollabiert, kurzum, dass es dynamisch sei. Das passte Einstein ganz und gar nicht – denn er lebte zu einer Zeit, als das Universum nur aus einer einzigen Galaxie, nämlich unserer Milchstraße, bestand und dazu noch statisch war. Das heißt: Das Universum verändert sich nicht. Es wird weder größer noch kleiner, es hat es schon immer gegeben und es wird es immer geben.
Wie ist unser Universum entstanden? Albert Einsteins Antwort darauf lautete zunächst: gar nicht.
In dieser Folge von AstroGeo erzählt Franzi die Geschichte vom Anfang des Anfangs: Ein belgischer Priester und Physiker namens Georges Lemaître fand als Erster heraus, dass sich das Universum ausdehnt – und ist von dieser Expansion des Universums zu seinem Anfang gelangt, den wir heute Urknall nennen.
Episodenbild: ESA/Robert Gendler
In dieser Episode geht es wieder um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Dieses Mal sprechen wir nochmal über die überwiegend männliche Sehschwäche beim Menschen, wie verschiedene Sterne sterben können und darüber, warum Karl die spannendsten Studien zu Io erst dann findet, wenn die Folge längst aufgenommen ist. Zuletzt geht es um unsere Sprache im Podcast und was wir daran ändern können und wollen.
Episodenbild: NASA/JPL/DLR; ESO/L. Calçada/M.Kornmesser
Am 9. März 1979 blickte die Astronomin Linda Morabito-Kelly auf eine Aufnahme der Raumsonde Voyager 1 und traute ihren Augen nicht. Erst vier Tage zuvor war die NASA-Mission auf ihrer großen Tour durchs Planetensystem am Jupiter und seinen Monden vorbeigeflogen und hatte dabei nicht nur den Gasriesen, sondern auch seine Monde fotografiert. Als Voyager ein paar letzte Bilder aus der Ferne machte, erschien nun über dem Mond Io eine gewaltige schirmförmige Wolke.
Der Vulkanausbruch auf Io gilt bis heute als eine der überraschendsten Entdeckungen der Raumfahrtgeschichte. Sie hat gezeigt, dass der jupiternächste Mond keine lange erkaltete und verkraterte Welt ist, wie etwa der Mond der Erde. Io ist stattdessen eine Vulkan-Wunderwelt: Auf seiner Oberfläche brodeln über 250 Vulkane. Es gibt mehrere Lavaseen, von denen der größe 180 Kilometer misst. Und Aschewolken können schon mal ein Drittel seines Durchmesser überspannen.
Karl erzählt in dieser Podcastfolge, was seit 1979 über Io in Erfahrung gebracht wurde – und warum das für Planetenforscherinnen und -forscher heute immer interessanter wird: Denn die vulkanische Aktivität auf Io kann auch etwas über ferne Exoplaneten verraten und genauso über die frühe und vulkanisch aktive Geschichte der Erde und anderer unserer planetaren Nachbarn.
Episodenbild: NASA/JPL/DLR
Im Februar 1946 verpasst der Amateurastronom Leslie Peltier die Gelegenheit seines Lebens: Im Sternbild Nördliche Krone ereignet sich ein regelmäßiges, aber seltenes astronomisches Ereignis, auf das er bereits Jahrzehnte gewartet hatte: Es erscheint für wenige Stunden ein neuer Stern – ein Lichtpunkt, der mit bloßem Auge sichtbar ist und der vorher nicht da zu sein schien.
Franzi erzählt in dieser Folge vom Phänomen solcher Stellae Novae, kurz Novae. Anders als der Name vermuten lässt, handelt es sich aber gar nicht um neue Sterne, sondern lediglich um das kurzzeitige Aufleuchten eines alten Weißen Zwergs in einer gewaltigen Wasserstoffexplosion. Obwohl Astronominnen und Astronomen den Prozess heute grob verstanden haben, sind noch viele Fragen um die Nova offen. Da passt es ganz gut, dass derzeit der fragliche Stern im Sternbild Nördliche Krone kurz vor dem nächsten Ausbruch steht.
Episodenbild: ESO/L. Calçada/M.Kornmesser
Im AstroGeo-Podcast erzählen Karl Urban und Franzi Konitzer abwechselnd eine Geschichte, die ihnen die Steine des kosmischen Vorgartens eingeflüstert oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben.
In dieser Episode geht es um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Episodenbild: Illustration: NASA, CSA, ESA, J. Olmsted (STScI), Science: N. Madhusudhan (Cambridge University); CC-BY 4.0 Agustín G. Martinelli, Marina Bento Soares, Cibele Schwanke
Im Jahr 1824 beschreibt der britische Geologe William Buckland den ersten Knochen eines Dinosaurier und begründet damit die wissenschaftliche Arbeit und den öffentlichen Hype um die riesigen Echsen. Viel weniger Beachtung findet, dass Buckland noch ein zweites und viel kleineres Fossil erwähnt: Es ist der Kieferknochen eines Säugetieres aus der Jurazeit vor über 145 Millionen Jahren.
Seit dieser ersten Beschreibung hat die Erforschung unserer lange ausgestorbenen Vorfahren große Fortschritte gemacht. Und doch stehlen Dinosaurier ihnen öffentlich nicht nur weiter die Show, es halten sich auch einige Mythen über die Evolution der Säugetiere.
Von einer äußerst unscheinbaren Entwicklung in der Karbonzeit vor 300 Millionen Jahren, über die überraschend großen Synapsiden im Perm bis zur Entwicklung der Merkmale, die heutige Säugetiere ausmachen: Karl räumt in dieser Folge von AstroGeo mit den Mythen über frühe Säugetier-Vorfahren auf und wagt dabei einen Ritt durch die Erdgeschichte.
Episodenbild: CC-BY 4.0 Agustín G. Martinelli, Marina Bento Soares, Cibele Schwanke
Eingepackt in eine dicke Atmosphäre aus Wasserstoff fristet K2-18b seit einigen Jahrmilliarden eine eigentlich unbescholtene Existenz als Exoplanet um einen roten Zwergstern. Er kreist irgendwo in Richtung des Sternbilds Löwe, rund 120 Lichtjahre von uns entfernt. Doch nachdem Forschende ihn 2015 entdeckt hatten, gerieten zumindest sie in Aufregung: Denn K2-18b ist zwar größer als die Erde und gleichzeitig weniger dicht – er besitzt also vermutlich keine feste Oberfläche aus Gestein – aber er umkreist seinen Stern in der sogenannten habitablen Zone: der Region um einen Stern, in der es flüssiges Wasser geben könnte. Außerdem ist der Planet mit einer dicken Atmosphäre gesegnet, die sich indirekt mit unseren Weltraumteleskopen beobachten lässt. Somit ist K2-18b ein perfektes Ziel für Forscherinnen und Forscher, die mehr über die für uns so fremde Welt erfahren wollen.
In dieser Podcastfolge erzählt Franzi die Geschichte des Exoplaneten K2-18b: was wir derzeit wirklich über diesen Planeten wissen können und was nicht – und woher die Gerüchte kommen, dass auf diesem so unscheinbaren Exoplaneten gar eine Biosignatur entdeckt worden sein soll.
Episodenbild: Illustration: NASA, CSA, ESA, J. Olmsted (STScI), Science: N. Madhusudhan (Cambridge University)
Im AstroGeo-Podcast erzählen Karl Urban und Franzi Konitzer abwechselnd eine Geschichte, die ihnen die Steine des kosmischen Vorgartens eingeflüstert oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben.
In dieser Episode geht es um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht.
Episodenbild: Keith Williamson (flickr.com), CC BY 2.0 DEED; CC-BY 4.0 Joschua Knüpper
Vor etwa 66 Millionen Jahren näherte sich ein zehn Kilometer großer Brocken aus dem All, durchquerte die Erdatmosphäre und schlug in einem Gebiet ein, das heute im östlichen Mexiko liegt. Das Ereignis markiert das berühmte Massensterben am Ende der Kreidezeit, bei dem 75 Prozent aller Arten und auch die meisten Dinosaurier verschwanden. Unter ihnen überlebten nur die Vorfahren der heutigen Vögel.
Die Debatte über die Ursachen von Massenaussterben war im 19. Jahrhundert von Unsicherheiten und christlichen Einflüssen geprägt. Erst 1980 erfolgte der wissenschaftliche Durchbruch, als weltweit eine dünne Schicht Iridium gefunden wurde – ein seltenes Metall, das vor allem auf manchen Asteroiden und Kometen vorkommt. Zehn Jahre später wurde auch der Krater gefunden, den der Brocken auf der Erde hinterlassen hat.
Karl erzählt in der neuen Folge nicht vom größten oder gefährlichsten, wohl aber vom berühmtesten Massensterben der Erdgeschichte. Neue Erkenntnisse vermitteln uns heute ein äußerst detailliertes Bild: vom Ausbruch gigantischer Lavamengen in der Kreidezeit bis zur genauen Jahreszeit des Einschlags.
Episodenbild: CC-BY 4.0 Joschua Knüpper
Wir Menschen sind nichts Besonderes: Wir leben auf keinem besonderen Planeten, wir befinden uns in einer ganz und gar gewöhnlichen Galaxie. Ist dann wenigstens unser Universum etwas ganz Besonderes, das es so nur einmal gibt?
Normalerweise machen die harten Naturgesetze der Physik spannenden Ideen aus der Science Fiction eher einen Strich durch die Rechnung: Beamen? Geht nicht, gibt’s nicht. Reisen mit Überlichtgeschwindigkeit? Kann man sich abschminken, ist rein physikalisch unmöglich. Und was ist mit dem bösen Doppelgänger, der im Paralleluniversum nebenan nur darauf lauert, die Herrschaft übers Multiversum an sich zu reißen?
In dieser Folge des AstroGeo-Podcast erzählt Franzi die Geschichte der Parallelwelten, Paralleluniversum, den Vielen Welten und dem Multiversum: Tatsächlich kennt die Physik nicht nur eine Art von Parallelwelt – sondern gleich mehrere! Leben wir tatsächlich in einem vor lauter Universen nur so blubbernden Multiversum? Gibt’s irgendwo da draußen vielleicht wirklich einen bösen – oder, noch viel schlimmer: einen guten! – Doppelgänger von uns allen? Vielleicht besteht das Paralleluniversum nebenan aus einem gigantischen Schwarzen Loch und sonst nichts? Und gibt es sie überhaupt?
Episodenbild: Keith Williamson (flickr.com), CC BY 2.0 DEED
Im AstroGeo-Podcast erzählen Karl Urban und Franzi Konitzer in jeder Folge eine Geschichte, die ihnen die Steine des kosmischen Vorgartens eingeflüstert oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben. Und eure Fragen, Kommentare, Anmerkungen, Wünsche, Feedback zu diesen Geschichten? Das findet ein Zuhause im AstroGeoPlänkel: eine Extrafolge von AstroGeo, die nach jeweils zwei Geschichten erscheint.
Dieses Mal mit Feedback zu den Folgen 75 – Schwarzes Loch im Zentrum, 82 – das hellste Licht und zu Folge 83 – das Dolomitproblem.
Episodenbild: Gary A. Glatzmaier / UCSC; CERN
Dolomit ist ein weit verbreitetes Gestein. Es gehört wie der Kalkstein zur Gruppe der Karbonate – ein Drittel aller Karbonate bestehen aus Dolomit. Doch obwohl das Gestein derart präsent ist und sogar einem Teil der Alpen seinen Namen verleiht, war bisher unklar, wie es überhaupt entstehen kann: Wie kriegt die Natur das hin? Dieses Dolomitproblem ist nicht gerade klein: Trotz zahlreicher Versuche im Labor konnte über Jahrzehnte kein schlüssiges Verfahren gefunden werden, um Dolomit bei gewöhnlichen Temperaturen der Erdoberfläche herzustellen. Ein Forscher der University of Texas führte sogar ein 32-jähriges Experiment durch, bei dem trotz aller Bemühungen kein Dolomit entstand.
Karl erzählt in dieser Folge von einem der größten Rätsel der Geowissenschaften. Denn Dolomit ist nicht nur weit verbreitet, sondern auch wichtig: Es ist bei Bergsteigern beliebt, speichert große Mengen Grundwasser und Erdöl und hat auch industrielle Bedeutung. Eine neue Forschungsarbeit bringt jetzt endlich Licht ins Dunkel des Dolomitproblems.
Episodenbild: CC-BY-SA 2.0 Christian Schirner
Eigentlich wollten die USA nur überprüfen, ob sich auch alle Beteiligten an den Partiellen Teststopp-Vertrag halten, der bestimmte Atomwaffentests und andere Kernexplosionen verbot: Dafür wurden in den 1960er-Jahren die Vela-Satelliten in hohe Erdumlaufbahnen geschickt. Doch zunächst fanden diese Satelliten keine Anzeichen auf geheime Kernwaffen-Tests, sondern auf mysteriöse helle Lichter aus dem All: Diese Gammablitze leuchteten im hochenergetischen Gammastrahlenbereich sekundenlang auf, bevor sie wieder verblassten. Sie schienen von überall her aus dem All zu kommen – was steckte dahinter?
Heute wissen wir: Gammablitze kommen von sehr weit weg, zum Glück, möchte man sagen: Denn würde ein Gammablitz von nebenan auf die Erdatmosphäre treffen, hätte das drastische Auswirkungen auf die Erde und auf das Leben auf ihrer Oberfläche. Ein solcher Gammablitz könnte ein Massenaussterben auslösen – und vielleicht ist das in der Vergangenheit schon einmal passiert.
In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte der Gammablitze und was wir über sie bereits wissen. Und sie erzählt vom 9. Oktober 2022, als der bislang hellste jemals gemessene Gammablitz namens GRB 221009A auf die Erdatmosphäre traf, Spitzname: BOAT – brightest of all time.
Im AstroGeo-Podcast erzählen Karl Urban und Franzi Konitzer in jeder Folge eine Geschichte, die ihnen die Steine des kosmischen Vorgartens eingeflüstert oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben. Und eure Fragen, Kommentare, Anmerkungen, Wünsche, Feedback zu diesen Geschichten? Das findet ein Zuhause im AstroGeoPlänkel: eine Extrafolge von AstroGeo, die immer nach zwei Geschichten erscheint.
Dieses Mal mit Feedback zu den Folgen 79 – Fehlende Neutrinos: Als die Sonne kaputt war und 80 – Rätselhaftes Erdmagnetfeld: vom Kompass zum Supercomputer, sowie einer Antwort auf eine etwas knifflige Frage zu Schwarzen Löchern: Warum genau kann denen zwar kein Licht entwischen, die Gravitation aber schon?
Episodenbild: NASA/Swift/A. Beardmore (University of Leicester); CC-BY-SA 2.0 Christian Schirner
Es schützt uns vor gefährlichen Ausbrüchen der Sonne und zaubert Polarlichter an den Himmel: Heute wissen wir, dass wir dem Magnetfeld der Erde eine Menge verdanken. Tatsächlich aber dauerte es 2500 Jahre, um zu verstehen, wie es entsteht.
Karl erzählt in dieser Folge des Podcasts, wie das Erdmagnetfeld über die Jahrhunderte immer genauer untersucht wurde, ohne dass Forscherinnen und Forscher ihm wirklich auf die Schliche kommen konnten. Beginnend vom ersten Kompass im alten China, über erste Versuche mit runden Magneten bis zur Entdeckung des Elektromagnetismus im 19. Jahrhundert: Der Geodynamo tief im Erdinnern weigerte sich, seine wahre Natur zu zeigen.
Am Ende brauchte es tief gehende Erkenntnisse aus der Geologie und Supercomputer, um dem Erdmagnetfeld mit seinen verwirrenden Schwankungen und Umpolungen auf die Schliche zu kommen.
Episodenbild: Gary A. Glatzmaier / UCSC
Warum scheint unsere Sonne? Antwort: Kernfusion! Tief in ihrem Innern verschmelzen also unter anderem Atomkerne des Wasserstoffs- zu Helium. Doch Forschende wollten sich in den 1960er Jahren nicht nur mit schönen Erklärungen begnügen, sondern eine so schlüssige Erklärung auch experimentell überprüfen: zum Beispiel mit einem unterirdischen Tank in der Homestake-Mine in South Dakota, der, gefüllt mit chemischem Reinigungsmittel, darauf wartete, dass ab und zu ein Neutrino von der Sonne vorbeikäme.
Denn unsere Sonne erzeugt bei der Kernfusion auch Neutrinos – und diese wollten Forscherinnen und Forscher finden und zählen. Das gelang ihnen auch. Doch leider kamen in den irdischen Neutrinodetektoren nur rund ein Drittel der erwarteten Neutrinos an. War gar die Sonne kaputt? Hatte man doch nicht verstanden, warum die Sonne scheint? Oder war das Problem ganz woanders zu verorten – vielleicht waren die Neutrinos selbst schuld?
Franzi erzählt Karl in dieser Ausgabe des AstroGeo Podcasts vom Rätsel der fehlenden Sonnen-Neutrinos – und zur Beruhigung: Nein, unsere Sonne war wohl doch nicht kaputt.
Episodenbild: CERN
Im Jahr 1972 finden Kerntechniker an einer französischen Wiederaufbereitungsanlage ein merkwürdiges Material: Es wurde aus dem Uranerz einer Lagerstätte in Gabun hergestellt. Und dieses Uranerz ist deutlich abgereichert: Der Anteil des Isotops Uran-235 ist viel geringer als überall sonst auf der Erde, dem Mond oder den Planeten. Was hier fehlt, ist das spaltbare Material: Es ist jenes Uran-Isotop, das in Kernreaktoren und für den Bau von Atombomben verwendet wird. Was ist mit diesem besonderen Uran-Isotop passiert: Wohin ist es verschwunden?
Karl erzählt in der Folge die Geschichte des Naturreaktors von Oklo. Während der Entdeckung war die Existenz eines stabilen nuklearen Kettenreaktion in der Erdgeschichte zwar für denkbar, aber kaum für wahrscheinlich gehalten worden. Mittlerweile aber ist das Rätsel in weiten Teilen gelöst, wie genau sich Kernreaktoren an 17 verschiedenen Stellen im Gestein Westafrikas spontan bilden konnten. Seit dieser Nachweis erbracht wurde, gelten Naturreaktoren als geheime Kraft der Erdgeschichte. Möglicherweise haben wir ihr sogar unser Leben zu verdanken.
Episodenbild: Geysir: Dall‘e; Schild: Karl Urban
Sag mir, wie du wackelst – und ich sage dir, wie alt du bist. Astronominnen und Astronomen haben mit der Asteroseismologie ein Werkzeug entwickelt, um Sternen intime Details zu entlocken. Die Sternenbeben verraten dazu, wie groß und schwer ein Stern ist und außerdem, wie viel Wasserstoff er seinem Zentrum schon zu Helium verbrannt hat.
Mit der Asteroseismologie können Forschende regelrecht in Sterne hineinhören. Ähnlich wie Erdbeben auf der Erde uns verraten, was im Inneren der Erde los ist, verraten die Schwingungen von Sternen, wie ihr Inneres aufgebaut ist.
Franzi erzählt die Geschichte der Asteroseismologie – und wie das überhaupt funktioniert, die Schwingungen und Sternenbeben eines Objekts zu vermessen, auf dem wir garantiert nie einen Seismographen aufstellen werden.
Titelbild: CC-BY-SA 4.0 Warrick Ball (danke!), Berechnung basierend auf Referenzmodell der Sonne von Christensen-Dalsgaard et al. (1996)
Wir kommen live auf die Bühne! Franzi und Karl sind am 7. November 2023 um 18:30 Uhr im Universum Bremen zu Gast. Hier gibt es (noch) Karten. (Verschoben vom 10.10.)
Am 27. März 1964 bebt im südlichen Alaska die Erde – mit verheerenden Folgen. Straßen, Brücken und Häuser werden schwer beschädigt, 131 Menschen verlieren ihr Leben. Ein ganzer Landstrich entlang der Küste wird bis zu acht Meter angehoben und weiter landeinwärts massiv abgesenkt. Mit einer Stärke von 9,2 gilt das Erdbeben von Alaska auch heute noch als die zweitstärkste Erderschütterung seit Messbeginn. Für Geologinnen und Geologen der Zeit ist das Beben ein Rätsel: Welcher Mechanismus mag sich hinter einem solch gewaltigen Ereignis verbergen?
Karl beginnt diese Podcastfolge mit der Entdeckung eines der wichtigsten Prozesse auf der Erde: Es sind Subduktionszonen, in denen feste Platten der Erdkruste ruckartig tief in den Erdmantel einsinken – so auch unter dem südlichen Alaska. Das Erdbeben von 1964 half dabei, diesen Prozess zu verstehen und schloss gleichzeitig eine wichtige Lücke im Verständnis der Plattentektonik, bei der feste Kruste nicht nur ständig neu entsteht, sondern andernorts auch wieder verschwindet.
Heute ist klar: Subduktionszonen sind der wahre Motor der Plattentektonik – und nicht nur das. Über lange Zeiträume helfen sie dabei, das Klima der Erde einigermaßen stabil zu halten. Deswegen stellt sich nicht nur die Frage, warum sich auf der Erde feste Gesteinsplatten bewegen können, sondern auch, warum die Kruste von Venus und Mars nie in Platten zerbrach. Möglicherweise blieben sie gerade deshalb tote, trockene Wüsten.
Titelbild: OpenStreetMap contributors under ODbL, Map tiles by CartoDB, under CC BY 3.0
Wir kommen live auf die Bühne! Franzi und Karl sind am 7. November 2023 um 18:30 Uhr im Universum Bremen zu Gast. Hier gibt es (noch) Karten. (Verschoben vom 10.10.)
Sterne kennen wir. Sterne sind runde, heiße und leuchtende Gaskugeln, es gibt zu Milliarden und Abermilliarden im Universum, angetrieben von der Kernfusion in ihrem Inneren. Aber was soll ein Quasi-Stern sein?
Diese hoch exotischen Himmelskörper betreiben in ihrem Inneren keine Kernfusion. Dafür sind sie so groß wie unser ganzes Sonnensystem – und in ihrer Mitte lauert ein Schwarzes Loch. Und eigentlich haben sie mit Sternen an sich überhaupt nichts zu tun. Wenn es sie wirklich gäbe, sähen wohl aber so aus wie ein viel zu groß geratener, rötlicher Riesenstern.
Gefunden hat bislang noch niemand einen dieser Quasi-Sterne. In dieser Folge von AstroGeo erzählt Franzi trotzdem ihre Geschichte: Sie könnten in der Frühzeit des Universums dafür gesorgt haben, dass die supermassereichen Schwarzen Löcher, die heutzutage im Zentrum fast aller Galaxien existieren, überhaupt erst so supermassereich werden konnten.
Episodenbild: NASA’s Goddard Space Flight Center/Jeremy Schnittman
Wir kommen live auf die Bühne! Franzi und Karl sind am 7. November 2023 um 18:30 Uhr im Universum Bremen zu Gast. Hier gibt es (noch) Karten. (Verschoben vom 10.10.)
Im August 1883 ereignet sich zwischen den Inseln Java und Sumatra im heutigen Indonesien eine Katastrophe: Ein Vulkan bricht mit solcher Macht aus, die zuvor nur selten beobachtet worden ist. Der Ausbruch des Krakatau fordert so viele Menschenleben wie nie zuvor in der Geschichte – und er verändert sogar die Atmosphäre nachhaltig. Sulfatpartikel färben über einige Jahre die Sonnenuntergänge weltweit in intensiven Tönen. Aber da ist noch mehr: Aschepartikel und Wasserdampf des Ausbruchs lösen ein neues Phänomen in den oberen Schichten der Atmosphäre aus, das bis heute existiert. Es sind Wolken, die bei Nacht leuchten.
In dieser Folge des AstroGeo Podcasts erzählt Karl von leuchtenden Nachtwolken und wie sie erstmals beobachtet wurden. Vor allem geht es darum, wie genau diese Wolken entstehen können und ob in neuerer Zeit nicht auch andere Faktoren zu ihrer Bildung beitragen. Denn leuchtende Nachtwolken sind nicht nur schön anzusehen – sie sind auch ein deutliches Zeichen dafür, wie rasant wir das Klima der Erde verändern.
Wir kommen live auf die Bühne! Franzi und Karl sind am 7. November 2023 um 18:30 Uhr im Universum Bremen zu Gast. Hier gibt es (noch) Karten. (Verschoben vom 10.10.)
Dunkle Materie muss es geben – jene unsichtbare Materie, die auch unsere Galaxie vor dem Auseinanderfliegen bewahrt. Bis zu 85 Prozent aller Materie in unserem Universum sollte daraus bestehen. Aber wo ist sie? Und was ist sie? Als guter Kandidat galten und gelten hypothetische Teilchen namens WIMP (weakly interacting massive particles). Stimmt das, wäre unsere ganze Galaxie in einen Nebel aus jenen zwar massereichen, aber extrem flüchtigen Teilchen regelrecht eingebettet. Auch durch die Erde würden in jedem Moment von Billionen von WIMPs fliegen.
Zwar gelten die WIMPs als guter Kandidat für die so dringend gesuchten Materieteilchen – aber ihr Nachweis auf der Erde gestaltet sich als schwierig. Oder doch nicht? Es gibt da zumindest ein Experiment in einem italienischen Labor, rund 1400 Meter unter der Erde, das behauptet: Wir haben die WIMPs gefunden! Und das schon seit über 25 Jahren!
Franzi erzählt die Geschichte des Dramas um das DAMA-Experiment: eine Geschichte vom Suchen und, nun ja, Nicht-Finden der Dunklen Materie – eine Erfolgsgeschichte der wissenschaftlichen Methode oder doch eher ein Trauerspiel?
Unser kosmischer Vorgarten besteht aus Himmelskörpern, die kaum unterschiedlicher sein könnten: Da sind verschieden große Planeten und ihre Monde, von denen manche brav auf regulären und andere auf äußerst verschrobenen Bahnen kreisen. Da sind auch Asteroiden, die in Gürteln oder auf kräftefreien Punkten der Planetenbahnen herumlungern.
Karl erzählt in dieser Folge davon, wie Planeten, Monde, Asteroiden, Kometen und sonstiger planetarer Schutt an ihren heutigen Platz gekommen sind. Es geht um das Nizza-Modell, eine Simulation des Planetensystems vor rund 3,9 Milliarden Jahren, als die großen Gasplaneten sich gegenseitig in die Quere kamen und wahrscheinlich eine gewaltige Katastrophe auslösten. Dabei wurde das Planetensystem einmal durchgerührt und es entstanden gewaltige Einschlagskrater. Möglicherweise tauschten sogar einzelne Planeten ihre Plätze.
Am Ende sah es völlig anders aus als zuvor – unser kosmischer Vorgarten hatte seine heutige Form angenommen. Obwohl es einige Zweifel gibt – bis heute passt das Nizza-Modell recht gut zu unserem Sonnensystem.
Inzwischen hat man sich fast an den Gedanken gewöhnt, dass unser Universum voll Dunkler Materie ist. Die können wir zwar nicht sehen, aber sie sorgt dafür, dass unsere Galaxienhaufen und auch unsere eigene Galaxie nicht auseinanderfliegen. Tatsächlich ist die Dunkle Materie für uns überlebenswichtig. Da verzeiht man ihr es gerne, dass sie wohl 84 Prozent aller Materie im Universum ausmacht.
Seit Jahrzehnten suchen Wissenschaftlerinnen und Wissenschaftler fieberhaft nach der Dunklen Materie – was gar so einfach ist, wenn man bedenkt, dass niemand sie sehen kann und sie auch nicht mit sichtbarer Materie wechselwirkt, aus der wir und alles um uns herum besteht. Aber, da sind Forschende fast sicher: Es muss sie einfach geben, die Dunkle Materie.
Aber warum muss es Dunkle Materie in unserem Universum geben? In dieser Folge von AstroGeo erzählt Franzi den Anfang einer Geschichte: die der Entdeckung der Dunklen Materie. Sie fängt mit dem Coma-Galaxienhaufen an, dessen Galaxien zu schnell unterwegs sind, hin zu Galaxien, die zu schnell rotieren und eigentlich auseinanderfliegen sollten. Doch schließlich war es die Kosmologie und der Wunsch nach einem ganz bestimmten Universum, welche der Dunklen Materie zu ihrem Durchbruch auf der wissenschaftlichen „Most-Wanted“-Liste verhalfen.
„Im Weltall hört niemand dich schreien.“ Das stimmt natürlich nur, wenn entweder das Mikrofon im Helm kaputt ist oder man den Helm gleich ganz vergessen hat. Allerdings gibt es außer der Erde auch keinen anderen Himmelskörper im Sonnensystem, den Menschen ohne Helm betreten sollten. Schall gibt es trotzdem längst nicht nur bei uns. Definitiv nicht.
In dieser Folge von AstroGeo erklingen extraterrestrische Klänge. Karl erzählt von all den Versuchen, überhaupt Mikrofone auf fernen Welten zum Einsatz zu bringen. Die Venus und der Saturnmond Titan waren die ersten, auf denen dies gelang. Der häufig von Sonden besuchte Mars blieb überraschend lange unbelauscht. Das klappte erst mit dem neusten NASA-Rover Perseverance, dessen Mikrofone sogleich fantastische Geräusche aufnahmen. Die Marsforschung ist um einen Sinn reicher geworden.
Es gibt Menschen, die fürchten sich vor dem Vakuumzerfall unseres Universums. Doch die gute Nachricht ist: Es spricht nicht viel für diese Art des Weltuntergangs. Und selbst wenn, könnten wir sowieso nichts dagegen unternehmen.
Franzi erzählt Karl in dieser Ausgabe des AstroGeo Podcasts die Geschichte des ultimativen apokalyptischen Szenarios: dem Vakuumzerfall. Tritt dieser ein, würde sich im Universum mit Lichtgeschwindigkeit eine Blase der Zerstörung ausbreiten und alles zerstören, was ihr in den Weg kommt. Was so schön schaurig klingt und leider nach hochkomplexer Quantenfeldtheorie und einer Menge Teilchenphysik müffelt, ist tatsächlich gar nicht komplett abwegig: Manche Wissenschaftlerinnen und Wissenschaftler sind tatsächlich der Meinung, dass unser Universum nur „metastabil“ sei. Das soll heißen: Es ist zwar nicht sehr wahrscheinlich, dass unser Universum übermorgen ausgelöscht wird, aber irgendwann in einer paar Myriaden Jahren könnte es unweigerlich soweit sein.
Wem jetzt angst und bange wird, für die gibt es eine noch bessere Nachricht: Die Wissenschaft ist sich überhaupt nicht einig, ob es überhaupt irgendwann soweit sein wird. Denn was uns das Szenario des Vakuumzerfalls eigentlich erzählt, ist eine Geschichte darüber, dass wir noch lange nicht verstanden haben, was die Welt im Innersten zusammenhält.
Lange war der Boden der Ozeane in weiten Teilen unerforscht: Forscherinnen und Forscher glaubten an eine flache und wenig interessante Wüste tief unter dem Meer, während Geologen sich komplett auf die Gesteine an Land konzentrierten. Denn die Kontinente galten den meisten ohnehin als unbeweglich.
Das änderte sich erst in den 1950er Jahren, als sich Reihe geophysikalischer Messmethoden durchsetzte. Echoortung mittels Sonar und seismische Messungen erlaubten eine Abtastung des Meeresbodens und der Gesteine darunter. In dieser Zeit begann die US-Geologin und Kartografin Marie Tharp am Lamont-Doherty Earth Observatory in New York City, die gewaltigen Datenberge der neuen Messgeräte auszuwerten. Ihre Tätigkeit war trotz ihrer Qualifikation die einer Assistentin. Doch Tharp schuf nicht nur die erste Karte des Atlantikbodens; sie entdeckte dabei ein 65.000 Kilometer langes Grabenbruchsystem, das den gesamten Planeten umspannt. Tharp gab mit dieser gewaltigen Entdeckung den Anstoß zur Entwicklung der modernen Plattentektonik.
Karl zeichnet in dieser Podcast-Folge das Wirken von Marie Tharp und ihrer Kollegen in Lamont nach, die zunächst gewaltige Widerstände unter den Geologen hervorrief. Als sich wenige Jahre später die Plattentektonik als akzeptierte Hypothese durchsetzte, geriet Maries Rolle in Vergessenheit.
Mit einem Happs ist alles im Schlund: Wenn zwei Schwarze Löcher miteinander verschmelzen, ist das ein gewaltiges kosmisches Ereignis, das die ganze Raumzeit erbeben lässt. Physikerinnen und Physiker freuen sich dann über die dabei entstehen Gravitationswellen, jenes Zittern der Raumzeit, das erstmals 2015 mit dem Gravitationswellendetektor LIGO gemessen wurde. Inzwischen ist die Entdeckung von solchen Verschmelzungen fast Routine geworden, über 90 Ereignisse zählt der dritte Gravitationswellenkatalog.
Doch schon das erste entdeckte Gravitationswellensignal namens GW150904 gab Wissenschaftlerinnen und Wissenschaftlern mehrere Rätsel auf: Die beiden Schwarzen Löcher, die da miteinander verschmolzen, waren eigentlich viel zu massereich, um existieren zu dürfen. Und kaum hatte man sich darüber Gedanken gemacht, gab es schon das nächste Problem: Wie schafft es dieses kompakte Doppelsystem, sich überhaupt nahe genug zu kommen, um miteinander zu verschmelzen, ohne sich vorher schon zu zerstören? Und dazu müsste dieser kosmische Annäherungsversuch eigentlich länger brauchen, als das Universum alt ist.
Franzi erzählt Karl in dieser Podcast-Folge die Geschichte dieser kompakten Binärsysteme: Denn Forschende wissen inzwischen dank der Gravitationswellen, dass es sie gibt. Warum es sie gibt, ist hingegen weniger klar.
William Aspdin war kein einfacher Zeitgenosse: Der Baustoff-Unternehmer im England des 19. Jahrhunderts trieb schon mal Geschäftspartner in den Ruin oder entwendete Straßenbelag als Rohstoff für seine Fabrik. Und doch ebnete Aspdin den Weg in die Moderne: Er entwickelte im Jahr 1843 den Portland-Zement, der bis heute das wichtigste Bindemittel für Beton ist. Aspdins Erfindung machte das moderne Bauen erst möglich – mit allen damit verbundenen Glanz- und Schattenseiten.
In dieser Folge erzählt Karl vom beliebtesten Baustoff der Menschheit und seinen Folgen: Derzeit baut der Mensch so viele Häuser, Brücken und Dämme wie nie zuvor, mit steigender Tendenz und wachsenden globalen Problemen. Sand und Kies werden knapp, wichtige Rohstoffe für den Beton. Und die Zementindustrie ist für rund jede zehnte Tonne CO2 verantwortlich, die der Mensch in die Atmosphäre ausstößt. Architekten, Bauingenieure und Chemiker tüfteln an Lösungen. Sie wollen einen Zement, der das Klima schont. Andere wollen den Beton sparsamer einsetzen oder fordern, den Schutt abgerissener Gebäude häufiger zu recyceln. Und dann wäre da noch die Idee, einen betonartiges Gestein auch für eine Basis auf dem Mond herzustellen.
Karl erzählt in dieser Folge, wie viel Beton die Menschheit pro Jahr herstellt. Sie entspricht einer 30 Zentimeter dicken Mauer, die einmal den Äquator umspannt und die über 1000 Meter hoch ist.
Globales Betonvolumen: \(V = 14 \cdot 10^9 m^3\) (Quelle, für 2020)
Erdumfang: \(l = 40.000 km\)
Breite der Mauer: \(b = 0,3 m\)
Höhe der Mauer: \(h = \frac{V}{l \cdot b} = 1167 m\)
Sterne gibt es entweder im Miniaturformat: Von Roten Zwergen über die uns vertrauten sonnenähnlichen Sterne bis zu den geradezu überdimensionierten Gesellen: Blaue Riesen. Sie können einige hundert Mal so groß wie die Sonne sein. Zu einem Besuch wird abgeraten: In ihrer Umgebung geht es hoch her. Und doch haben wir den Blauen Riesen eine ganze Menge zu verdanken: den Kohlenstoff, aus dem das Leben besteht oder den Sauerstoff, den wir in jedem Moment atmen. Ohne Blaue Riesen gäbe es uns wahrscheinlich nicht.
Doch Blaue Riesen sind nicht nur recht selten, sondern es gibt sie auch nur für relativ kurze Zeit: Die Kernfusion in ihrem Innern hält nur wenige Millionen Jahre durch, bevor Blaue Riesen als Supernova explodieren. Und dann ist da auch noch die Tatsache, dass gerade diese riesigen Sterne üblicherweise nicht allein vorkommen, sondern fast immer einen Begleitstern haben. Und wenn der auch ein Blauer Riese ist, dann wird es richtig spannend!
In dieser Folge von AstroGeo erzählt Franzi die Geschichte der massereichsten Sterne im Universum: wie sie aussehen, warum ihre Entwicklung so spannend ist und was wir ihnen zu verdanken haben – vor allem, wenn sie im Doppelpack vorkommen. Plus Beobachtungstipps, wo und wie ihr selbst Blaue Riesen sehen könnt.
Die Geschichte der Tiere auf der Erde umfasst über eine halbe Milliarde Jahre, doch verlief sie nicht geradlinig. Insgesamt mindestens fünfmal stand das Leben am Abgrund. Längst noch nicht jedes Massensterben der Erdgeschichte ist aufgeklärt. Zwischen den Zeitaltern Perm und Trias war es besonders schlimm: Der blaue Planet erlebte vor 251 Millionen Jahre das bis heute größte Massensterben seiner Tierwelt, bei dem über 70 Prozent der Landtiere und sogar 95 Prozent aller Tierarten in den Meeren ausstarben.
Karl hat für diese des AstroGeo Podcast viele Studien gesichtet: Was wissen Geologinnen und Geologen über die Ursache der permotriassischen Katastrophe? Über die letzten Jahrzehnte wurden etliche Thesen formuliert, allen voran brodelnde Vulkane im heutigen Sibirien und der Einschlag eines gewaltigen Meteoriten. Mittlerweile ist klar: Das größte Massensterben sollte uns Menschen interessieren. Denn Vieles, was damals auf der Erde passierte, scheint sich nun durch unser Handeln zu wiederholen, wenn wir nichts dagegen unternehmen.
Wie heiß ist es im Inneren der Sonne? Wie groß ist der Rote Zwerg von Nebenan? Und wie lange hat Beteigeuze ungefähr noch, bevor er als Supernova explodieren wird? Das alles lässt sich einfach ausrechnen – und zwar mit nur vier scheinbar einfachen Gleichungen. Das Innere eines Sterns ist berechenbar, und das weit in die Vergangenheit und genauso in die Zukunft.
Aber natürlich ist im Universum nichts so einfach, wie es auf den ersten Blick scheinen mag, auch Sterne nicht. Denn um die Struktur und die Entwicklung von Sternen zu berechnen, kommt man mit Papier, Bleistift und Gehirnschmalz alleine nicht weiter. Deswegen waren schon die ersten Computer von großer Hilfe, selbst wenn die am Anfang noch einen ganzen Raum ausgefüllt haben und mit Lochkarten gefüttert wurden.
In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte eines solchen „Rechenmaschinenprogramms“, das seit den 1960er-Jahren bis heute weiterentwickelt wird: einem Code, der Physikerinnen und Physikern verrät, wie es im Inneren eines Sterns aussieht und wie er sich entwickeln wird. Keine Sorge: Für den Genuss dieser Folge sind weder mathematische Fähigkeiten noch Programmierkenntnisse nötig.
Pluto ist eine beliebte Welt. Spätestens seit am 14. Juli 2015 die NASA-Raumsonde New Horizons an dem Zwergplaneten vorbeigerauscht war, flogen ihm die Herzen vieler Menschen zu. Es zeigte sich auch, dass auf seiner Oberfläche selbst ein Herz sitzt, wenn auch ein sehr kaltes. Denn die mittlere Temperatur auf Plutos Oberfläche mit seinem gewaltigen herzförmigen Gletscher aus Stickstoffeis liegt bei gerade einmal minus 229 °C.
Karl taucht in dieser Folge des Podcasts in die Geologie des Plutos ein. Schon lange vor dem Vorbeiflug von New Horizons gab es einige Kenntnisse über die ferne Welt. Doch erst die Daten der Sonde zeigten, wie dynamisch sich der Zwergplanet im Laufe eines 248 Erdjahre langen Sonnenumlaufs verändert. Gleich vier Eissorten spielen dabei eine wesentliche Rolle: Sie gleiten als Gletscher über die Oberfläche, sublimieren in eine dünne Atmsphäre, bilden steile Berghänge oder brechen aus Kryovulkanen als eisige Lava empor.
Sie sind heller als jeder Stern und halten länger durch als jede Supernova: Die allerhellsten Lichter am Himmel sind Quasare. Zwar war der Begriff „Quasar“ schnell gefunden, nachdem der allererste Kandidat – namens 3C 273 – in den 1960er-Jahren aufgestöbert worden war: „Quasar“ steht für „quasi-stellar radio source“, also: Sieht aus wie ein Stern, aber eben nur fast, und auch übrigens hauptsächlich im Radiobereich.
Doch was verbirgt sich eigentlich hinter den Quasaren? Die allerhellsten Objekte im Universum werden von den dunkelsten Objekten im Universum angetrieben: von supermassereichen Schwarzen Löchern, die sich in den Zentren von Galaxien verbergen.
Franzi erzählt die Geschichte, wie Quasare entdeckt wurden: Warum diese exotischen Objekte es schaffen, so hell zu leuchten, was die Expansion unseres Universums damit zu tun hat, warum Quasare nur eine Phase für eine Galaxie sind – und warum es für uns ziemlich praktisch ist, dass unsere eigene Galaxie derzeit keinen Quasar in ihrem galaktischem Zentrum beherbergt.
Er ist der sechstlängste Fluss der Alpen und er könnte ein Naturparadies sein: Doch der Inn ist wie alle Flüsse der mitteleuropäischen Kulturlandschaft vom Menschen stark verändert worden. Er wurde begradigt, von Dämmen begrenzt und mit Staudämmen unterbrochen. Viele seltene Arten, die den Inn und seine Ufer einmal besiedelten, sind längst verschwunden.
In dieser Folge von AstroGeo erzählt die Journalistin und Flussreporterin Sonja Bettel von der Renaturierung des Inns. Der Fluss wird wieder geweitet; ihm wird Raum gelassen, um sein Bett selbst zu suchen. Zwar gelang das erst an einigen Stellen, aber die länderübergreifende Anstrengung zeigt bereits Erfolge: Seltene Arten wie der Flussuferläufer oder der Zwerg-Rohrkolben kehren zurück. Ein gemeinsamer, wissenschaftlich erstellter Aktionsplan soll bei der gemeinsamen Anstrengung helfen.
Eigentlich ist Stickstoff ein unverzichtbares Element für alle Lebewesen. Über Jahrmilliarden waren biologisch nutzbare Formen des Stickstoffs heiß begehrt und rar. Doch seit rund hundert Jahren hat sich die Lage auf der Erde drastisch verändert. Seitdem verschmutzt und überdüngt die Menschheit den Planeten mit Stickstoff-Verbindungen wie Nitrat, Stickoxiden, Ammoniak und Lachgas und verändert damit fundamental die Bedingungen im Spiel des Lebens – eine problematische Premiere in der Erdgeschichte.
In dieser Episode von AstroGeo taucht die Wissenschaftsjournalistin und Geoökologin Anne Preger in die Geschichte um den Stickstoff ein. Sie erzählt, welche Folgen die globale Überdosis an Stickstoffverbindungen für die menschliche Gesundheit, die Artenvielfalt, die Luftqualität und das Klima mit sich bringt und wie sich Stickstoff zielgerichteter einsetzen ließe. Zu alledem hat Anne Preger ein Sachbuch recherchiert und geschrieben.
Episodenbild: Anne Preger
Für viele ist es ein Kindheitstraum: einmal den Winter am wohl unwirtlichsten Ort der Erde verbringen. Die Amundsen-Scott-Südpolstation wurde 1956 gegründet, seither stetig ausgebaut und sie ist das ganze Jahr über besetzt. Eine der wichtigsten Aufgaben der Station ist die astronomische Forschung, denn an kaum einem anderen Ort der Erdoberfläche ist die Luft so dünn und trocken. Doch der Betrieb der verschiedenen Observatorien mitten in der vereisten Antarktis ist herausfordernd und erfordert erfahrenes Personal.
In dieser Folge erzählt der Astrophysiker Robert Schwarz, wie er für eine US-Universität zum Südpol-Überwinterer wurde. Es geht um das erste Neutrinoexperiment, das ins antarktische Eis eingelassen wurde und Infrarotteleskope, die Blicke ins junge Universum ermöglichen. Der Betrieb brachte nicht nur Technik, sondern auch den Techniker an seine Belastungsgrenze. Robert Schwarz hat jetzt gemeinsam mit der Wissenschaftsjournalistin Felicitas Mokler ein Buch über seine Erfahrungen geschrieben, aus dem er hier erzählt.
Episodenbild: Robert Schwarz
Schleim hat es nicht leicht. Er ist vielleicht das einzige Biomaterial mit gleich zwei Imageproblemen. Er macht äußerlich nicht viel her, gilt also als banal oder Abfall. Und er ist ein außerordentlich potenter Ekel-Auslöser. Das hat seine Berechtigung, denn diese Emotion soll uns mit starken Abwehrreaktionen von Pathogenen und Parasiten fernhalten. Und Schleim ist tatsächlich oft kontaminiert. Er fängt Erreger ein und Mikroben produzieren selbst eigene Schleime. Das sind gute Gründe, um einen großen Bogen um Schleim zu machen. Aus der Distanz wird aber leicht übersehen, wie wichtig, komplex und unverzichtbar dieses Biomaterial ist.
Schleim hat das Leben auf der Erde wohl von Beginn an begleitet und liefert mehrere essenzielle Funktionen, etwa als Gleitmittel, als Klebstoff und als selektive Barriere, die etwa im Darm Nährstoffe passieren lässt und gleichzeitig Erreger abfängt. Dabei ähneln sich biologische Schleime und gehören zur großen Gruppe der Hydrogele. Sie bestehen fast nur aus Wasser, das aber so gebunden ist, dass es nur langsam fließen kann, Das ergibt die charakteristische Schleimigkeit, wobei der Organismus die Konsistenz und Eigenschaften von Schleimen verändern und so an den jeweiligen Bedarf anpassen kann.
In dieser Folge des AstroGeo Podcast erzählt Susanne Wedlich, wie sie ihren Ekel überwand und den Schleim lieben lernte. Vor allem aber geht es um die Rolle des Schleims auf der Erde und wie das Leben sie dank des besonderen Materials gestaltete. Susanne Wedlich ist Autorin des Riffreporter-Magazins Schleimwelten und hat ein Buch über das Thema geschrieben.
75 Jahre ist es her, dass ein Farmer in der Wüste von New Mexico auf seltsame Trümmerteile stieß. Der Mann ging mit seinem Fund zum Sheriff; der wiederum verständigte das Militär. Die US Army veröffentliche kurz darauf eine Pressemitteilung: „Ufo in der Wüste abgestürzt.“ Der Name des Ortes: Roswell.
Die Begebenheit ist lange her, doch noch immer ranken sich zahlreiche Verschwörungstheorien um den angeblichen Ufo-Crash von 1947. In unserem Podcast berichtet USA-Reporter Steve Przybilla, wie die Bewohnerinnen und Bewohner im Laufe ihrer Geschichte unterschiedlich mit ihrem außerirdischen Erbe umgehen.
Mal verlacht, mal verpönt, aber immer präsent: Die vermeintliche Ufo-Landung spielt noch immer eine wichtige Rolle in Roswell, vor allem für den Tourismus. Steve schildert seine persönlichen Eindrücke. Er hat bereits 2010 für seine Masterarbeit in Roswell geforscht und die Stadt später noch einmal besucht. Auch bei RiffReporter hat er bereits über Roswell geschrieben.
Episodenbild: Steve Przybilla
Im Jahr 1610 beobachtete Galileo Galilei als erster Mensch die Ringe des Saturn durch ein Teleskop. Er wusste zwar nicht genau, was das für seitliche Ausbuchtungen am runden Planeten sind und notiert sich diese „Ohren“ in seinem Notizbuch. Später erkannten Astronomen die Gestalt der Ringe, aber erst in den 1970er und 1980er Jahren haben Raumsonden vom Ringplaneten atemberaubende Fotos zurück geschickt.
Vor ziemlich genau fünf Jahren ging die letzte Saturnmission erfolgreich zu Ende: Cassini-Huygens versank am 17. September 2017 in der dichten Atmosphäre des Saturn. Der Orbiter Cassini umkreiste mehrere Jahre lang den Planeten und seine Monde und die Landeeinheit Huygens setzte sogar auf dem Saturnmond Titan auf.
Eine Unmenge an Daten hat Cassini zur Erde zurück geschickt. Bis heute läuft die Auswertung und ist für viele Überraschungen gut. In dieser Folge vom AstroGeo-Podcast erzählt Yvonne Maier, wie Forschende nun anhand der Cassini-Daten ausgerechnet haben, wie es dazu gekommen ist, dass die Rotationsachse des Saturns knapp 30 Grad geneigt ist und warum er so ein beeindruckendes Ringsystem hat – und was ein verschwundener Mond damit zu tun haben könnte.
Die Vereisung fing an den Polen an. Eisschollen ballten sich zu Packeis und überspannten bald den arktischen und antarktischen Ozean. Auch Kontinente in der Nähe der Pole wurden von Eis überzogen, während von den großen Gebirgen hinab Gletscher immer tiefer in die Täler vordrangen. Es war der Beginn einer Eiszeit, die eigentlich zur Erde dazugehören: Alle paar Jahrtausende gab es in jüngerer geologischer Vergangenheit solche Phasen. Unsere Vorfahren erlebten und überlebten vor 23.000 Jahren den Höhepunkt der letzten Eiszeit. Aber diese war ganz anders.
Karl erzählt die Geschichte einer der extremsten Phasen der Erdgeschichte: Vor 650 Millionen Jahren froren nicht nur Teile der Kontinente zu, sondern die Erde gefror komplett. Alle Landmassen und Ozeane waren zwischen den Polen und dem Äquator von Eis bedeckt. Der Blaue Planet war weiß geworden. Diese Phase dauerte in zwei Episoden unvorstellbare 67 Millionen Jahre an. Die Theorie hielten die meisten Geologinnen und Geologen zuerst für so extrem, dass es fast 40 Jahre dauerte, bis die Fachwelt die Idee von Schneeball Erde akzeptierte. Denn es fand sich mitterlweile eine Erklärung, wie die zum Schneeball gefrorene Erde auftauen konnte.
Episodenbild: NASA
„It’s never aliens!“ – Es stimmt schon, dass es bislang für mysteriöse Signale aus dem All meistens profane Erklärungen gab. Aber wie sollen wir potenzielle Außerirdische finden, wenn wir nicht nach ihnen suchen?
Da ein Besuch vor Ort nicht im Rahmen unseres Möglichen liegt, gibt es seit einigen Jahrzehnten SETI: Search for Extraterrestrial Intelligence. Und derzeit läuft das größte SETI-Vorhaben aller Zeiten: Das Breakthrough Listen-Projekt hat zehn Jahre Zeit und 100 Millionen US-Dollar zur Verfügung, um nachzuhören und nachzusehen, ob nicht doch Außerirdische durchs All funken oder gar Laserpulse senden. Und tatsächlich gab es vor ein paar Jahren dieses eine interessante Signal, das praktischerweise von unserem allernächsten Stern zu stammen schien – von Proxima Centauri.
Franzi erzählt einem skeptischen Karl die Geschichte dieses so vielversprechenden Signals namens BLC1, davon, mit welchen Schwierigkeiten Alienjägerinnen und -jäger heutzutage zu kämpfen haben und nach was man überhaupt sucht, wenn man dafür ein gigantisch großes Radioteleskop zur Verfügung hat.
Episodenbild: CC-BY 2.0 Xenu / Flickr
Das Death Valley ist ein Ort der Extreme: Zwischen Nevada und Kalifornien gelegen, handelt es sich um einen der trockensten und heißesten Orte der Erde. Goldsucher, die das Tal auf dem Weg nach Westen kreuzten, gaben ihm seinen Namen. Später, im Jahr 1913, maß das US-Wetterbüro hier die höchste jemals gemessene Temperatur von 56,7 Grad Celsius.
Das wohl größte geologische Rätsel des Death Valley wurde erst etwas später entdeckt: Seit 1948 reisten Forschende immer wieder in ein kleines Seitental. Es ist ein Hochplateau, das 1132 Meter über dem Meeresspiegel liegt. In dieser flachen Ebene geht etwas Merkwürdiges vor sich: Es gibt Steine, die sich wie von Geisterhand bewegen. Nie hatte ein Mensch gesehen, wie sie sich bewegten oder warum – doch die Wanderung der Brocken ist durch Schleifspuren im feinen Staub sichtbar.
In dieser Folge erzählt Karl die Geschichte des kleinen Seitentals im Death Valley, das den Namen Racetrack Playa trägt. Das Rennen der Steine geht dort bis heute weiter – es nahm vor wenigen Jahren allerdings eine interessante Wendung.
Episodenbild: CC-BY 2.0 John Fowler
Bei den Mondlandungen in den 1960er- und 1970er-Jahren ging es um Vieles – die Wissenschaft war da, ehrlich gesagt, eher eine Randnotiz. Und die Apollo-Astronauten haben als Abschiedsgruß auch noch eine ganze Menge Müll zurückgelassen. Allerdings haben Sie auch etwas durch und durch Nützliches auf dem Mond abgestellt. Es war leicht zu tragen und unkompliziert in der Installation: Spiegel. Auch zwei sowjetische Mondfahrzeuge hatten Spiegel an Bord.
Franzi erzählt, warum die lunaren Retroreflektoren auch noch fünfzig Jahre nach dem Ansturm auf den Mond praktisch sind: Dieses „Lunar Laser Ranging“ ist längst nicht nur dafür gut, um die Abstand zu unserem Begleiter hochgenau zu vermessen.
Episodenbild: NASA
Am 1. Januar 1801 entdeckt der italienische Astronom Giuseppe Piazzi einen neuen Planeten – jedenfalls glaubt er das. Mehrere Jahre hatten Astronomen schon nach dem Himmelskörper gesucht, der sich zwischen den Bahnen von Mars und Jupiter verstecken soll. Die Freude über den Fund ist allerdings nicht von Dauer: Bald stellt sich heraus, dass er nur einer von vielen kleinen Asteroiden ist, die auf ähnlichen Bahnen um die Sonne kreisen. Ceres verschwindet in Folge für fast 200 Jahre aus dem Rampenlicht, bevor er strahlend zurückkehrt.
Karl erzählt die Geschichte von Ceres, dessen Ansehen in den letzten zwei Jahrzehnten eine enorme Wende erfahren hat. Er wurde genauer beobachtet und bekam Sondenbesuch. Der größte Körper des Asteroidengürtels ist nicht nur zum Zwergplaneten aufgestiegen, sondern entpuppte sich auch geologisch als einer der erstaunlichsten Körper des Sonnensystems.
Beitragsbild: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Das Jahr 1917 war eine Zeit, als man sich noch nicht mal sicher war, dass es andere Galaxien als unsere eigene gibt. Es war eine Zeit, als unsere Vorfahren mitten im Ersten Weltkrieg steckten, und „Exoplanetenjägerin“ noch keine anerkannte Berufsbezeichnung war: Es war eine Zeit, zu der der Astronom Adriaan van Maanen sein Teleskop gen Himmel richtete und etwas entdeckte, was als Van Maanens Stern bekannt werden sollte.
Diesen ganz besonderen Stern hat er zwar definitiv entdeckt. Aber was sich in der Atmosphäre dieses Sterns wirklich versteckte, zeigte sich erst viel später.
Franzi erzählt die Geschichte von Adriaan van Maanen und seinem Stern. Es ist eine Geschichte über einen Pechvogel der Astronomie und über die Zukunft unseres eigenen Sonnensystems.
Episodenbild: NASA/JPL-Caltech
Geologinnen und Geologen schauen sich gerne Steine an, und das nicht nur, wenn sie glitzern und funkeln. Denn Steine verraten etwas über das Erdinnere, in dem viele von ihnen entstanden sind. Die geologische Sammelwut im Namen der Forschung hat aber ihre Grenze: Die meisten Steine, die wir finden, stammen aus der Erdkruste, der vergleichsweise dünnen äußersten Schicht des Planeten. Nur sehr selten sind Gesteine aus tieferen Schichten. Wer bis in den Kern blicken möchte, muss dagegen lernen, die Signale der Erdbebenwellen zu verstehen.
In dieser Episode erzählt Karl die Geschichte eines Menschen, dem es erstmalig gelang, bis hinab in den inneren Kern der Erde zu blicken. Es ist die Geschichte der dänischen Mathematikerin, Geodätin und Seismologin Inge Lehmann. Fast gleich alt wie die Physiker Albert Einstein oder Niels Bohr, forschte sie in und trotz einer wissenschaftlichen Welt, in der Frauen keine Rolle spielen durften.
Episodenbild: The Royal Library, National Libary of Denmark and University of Copenhagen University Library
Hundert Jahre lang hat die Suche nach Gravitationswellen gedauert: jene Kräuselungen in der Raumzeit, die das Universum zum Tschilpen und Brummen bringen. Auch am Südpol hatten Forscherinnen und Forscher danach gesucht, analysierten jahrelang ihre Daten und konnten so schließlich im Jahr 2014 verkünden: Gefunden! Und, was ziemlich praktisch war: Jene Gravitationswellen wären ein Beleg dafür, dass sich der Urknall und die anschließende kosmische Inflation genauso abgespielt haben, wie man sich das standardmäßig vorstellt. Dieser Beleg wäre damit gleich mit erbracht worden.
Doch statt dem Happy End gab es Pleiten, Pech und Pannen: Das Gravitationswellensignal zerfiel nur wenig später zu Staub. Franzi erzählt die Geschichte von BICEP2, der Jagd nach primordialen Gravitationswellen und was das alles mit einem sich exponentiell schnell aufblähenden Universum und interstellarem Staub zu tun hat.
Episodenbild: ESA/Planck Collaboration. Acknowledgment: M.-A. Miville-Deschênes, CNRS – Institut d’Astrophysique Spatiale, Université Paris-XI, Orsay, France
Die Erde ist der blaue Planet, dabei ist sie verglichen mit vielen anderen Welten überraschend trocken. Nur 0,2 Prozent der Masse der Erde bestehen aus Wasser. Besonders Monde jenseits der Marsbahn besitzen häufig eine dicke Kruste auf Eis. Dazu gehören die Jupitermonde Europa, Ganymed und Kallisto, der Saturnmond Enceladus oder der Neptunmond Triton. Was sich unter dem Eis befindet, war lange völlig unklar.
Karl erzählt in dieser Folge, wie der erste Ozean außerhalb der Erde auf Europa am Jupiter entdeckt wurde. Europa ist den Astronomen schon seit über 400 Jahren bekannt. Dennoch brauchte es Jahrhunderte des wissenschaftlichen Fortschritts, viele Jahre von Beobachtungen und mehrere Raumsonden, unter die Eisschicht zu blicken. Unter mehreren Kilometern Eis könnte es von Leben wimmeln.
Episodenbild: NASA/JPL-Caltech/SETI Institute
Galaxienhaufen, Dunkle Energie, Supernovaüberreste und Neutronensterne: Auf der To-do-Liste des Weltraumteleskops eRosita stand nicht weniger als eine Kartierung des gesamten Himmels, als es 2019 ins All befördert wurde. Eine Himmelsdurchmusterung im Röntgenbereich hatten sich die Forschenden hinter der vornehmlich deutschen Mission vorgenommen, insgesamt acht Mal sollte eRosita den Himmel abtasten. Doch das ist bisher nicht gelungen: Denn eRosita ist auf einem russischen Satelliten montiert. Ins All geschossen wurde das deutsche Teleskop von Russland. Und auch den Bodenkontakt hat bis Anfang März 2022 Russland übernommen… und was war dann?
Franzi erzählt die Geschichte des Röntgenteleskops eRosita, das Jahrzehnte gebraucht hat, um überhaupt da zu sein, wo es heute ist, nämlich am Lagrange-Punkt L2. Und es ist eine Geschichte davon, dass ein Krieg auf der Erde auch im All seine Spuren hinterlässt.
Beitragsbild: X-ray: Peter Predehl, Werner Becker (MPE), Davide Mella
Auf Bildern einer uralten und mäßig guten Kamera entdeckt der spanische Forscher Jorge Hernández Bernal im Jahr 2018 eine gewaltige Wolke auf dem Mars, die bisher niemandem aufgefallen zu sein schien. Die Kamera befindet sich an Bord der betagten Raumsonde Mars Express der ESA. Und eigentlich werden deren Aufnahmen nur verwendet, um für der Öffentlichkeit ein tägliches Bild vom Mars zu liefern. Wissenschaftliche Forschung ist damit nicht geplant.
Karl erzählt im Podcast, wie das Bild der Wolke ihn auf einer Konferenz in Beschlag nahm und wie er mit dem Entdecker ins Gespräch kam. In der Geschichte geht es um Vulkane auf dem Mars, die wie alles auf dem Roten Planeten riesenhaft und für Erdenbewohner kaum zu fassen sind und die noch immer für eine Überraschung gut sind.
Wann die Wolke das nächste mal auftritt: In den fünf letzten Marsjahren wurde die Wolke beobachtet (Hernández-Bernal 2020). Und da erschien die Wolke immer zwischen 220° und 320° Solar Longitude. Das beschreibt einen Zeitraum: umgerechnet bedeutet das, im Frühling bis Sommer auf der Südhalbkugel. Frühlingsanfang war dort am 24. Februar 2022 und Sommeranfang ist am 21. Juli 2022. Das heißt, grob zwischen April und November 2022 wäre eine neue Wolke am Arsia Mons zu erwarten (Umrechnung via WP: Timing on Mars).
Beitragsbild: ESA/DLR/FU Berlin/J. Cowart, CC BY-SA 3.0 IGO
Im Jahr 1054 war richtig was los am Nachthimmel. Und 1181 auch. Und was für ein Jahr war 1604, als Johannes Kepler gar ein ganzes Buch über den neuen „Gaststern“ am Himmel schrieb! Doch seitdem:Fehlanzeige! Es gab seither keine einzige Sternexplosione in unserer Milchstraße mehr. Im Universum explodiert gefühlt ständig irgendwo eine Supernova. Und eigentlich sollte es auch innerhalb unserer Milchstraße doch bald irgendwann mal wieder so weit sein – Spektakel am irdischen Nacht- oder sogar Taghimmel inklusive. Oder?
Franzi erzählt, warum sie sehnsüchtig auf die nächste galaktische Sternexplosion wartet – und was ihr selbst beobachten könntet, wenn das denn endlich passiert.
Titelbild: NASA/CXC/SAO/D.Patnaude, Optical: DSS
Im Februar 1968 traf sich auf dem Gelände des Johnson Space Centers in Texas eine illustre Gruppe von Ingenieuren und Wissenschaftlern. Sie wollten beraten, wo schon bald die ersten Menschen auf dem Mond landen sollten. Dabei ging es allerdings nur sehr am Rand um die Geologie des Erdtrabanten.
Karl erzählt die Geschichte des Mondgesteins, die nach etlichen erfolgreichen menschlichen und robotischen Missionen erst ihren Anfang nahm. Das Mondgestein wanderte dabei nicht nur in die Labore, sondern geriet auch auf Abwege.
Titelbild: NASA
Eigentlich hatte der Radioastronom Alex Wolszczan 1990 in Puerto Rico nach etwas ganz anderem gesucht – und fand stattdessen erstmals Planeten, die einen anderen Stern als unsere Sonne umkreisen. Wobei „Stern“, strenggenommen, nicht ganz richtig ist: Denn dieser Exoplanet umkreist einen Pulsar, also einen Neutronenstern namens PSR B1257+12. Damit ist er bis heute unter den seitdem tausenden gefundenen Exoplaneten ein wahrer Exot.
Franzi erzählt die Geschichte dieses Zufallsfunds, von den wohl dichtesten (im wörtlichen Sinne) Objekten im Universum und warum diese allerersten Exoplaneten zu richtig gruseligen Namen gekommen sind.
Titelbild: NASA/JPL-Caltech
Vor einem Jahrzehnt ist AstroGeo gestartet: Im Mai 2012 erschien die erste Episode. Seither hat an dieser Stelle der Journalist Karl Urban Einblicke in seine Recherchen und seine Interviews gegeben.
All das wird bleiben, aber AstroGeo geht einen neuen Weg. Ab sofort sind wir zu zweit. Karl Urban wird von seiner Kollegin Franziska Konitzer unterstützt.
Wir starten diese zweite Staffel in einem regelmäßigen Rhythmus. Alle zwei Wochen erzählen wir uns abwechselnd eine Geschichte. Und wie gehabt, geben wir dabei tief Einblicke in unsere Recherchen.
Dabei verfolgen wir die Idee des Podcast zwischen den Welten sogar noch stringenter als bisher: Denn Franzi ist Astrophysikerin, Karl ist Geologe. Wir erzählen euch das beste aus beiden Welten, der Astrophysik wie den Geowissenschaften. AstroGeo in Reinform.
Der Wind bläht die Segel und das Schiff nimmt Fahrt auf, neuen Abenteuern entgegen. Eine solche Reise ist auch im All möglich: Mit Segeln ließen sich nach dem Raketenstart Planeten, Asteroiden oder Kometen ganz ohne Treibstoff erreichen. Es sind sogar ganz andersartige Umlaufbahnen möglich.
Noch aber steht die Technologie am Anfang: Seit 2019 segelt LightSail-2 um die Erde, langsam übernimmt auch die NASA die Technologie. In dieser Episode geht es um den aktuellen Stand der Sonnensegel: Wir haben mit Expertinnen und Experten gesprochen, was die Planer noch davon abhält, im All Segel zu setzen – und warum manche diesen Schritt mittlerweile wagen.
In dieser Folge kommen zu Wort: Bruce Betts (Planetary Society), Jeanette Heiligers (TU Delft), Roman Kezerashvili (City University New York), Tom Sproewitz (DLR Bremen), Les Johnson (NASA).
Titelbild: NASA
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Stiege man in ein Raumschiff und flöge hinaus ins All, so würde es schon bald dunkel werden. Die Sonne würde zu einem unauffälligen Lichtpunkt schrumpfen, die in einem Meer anderer Sterne kaum noch auffallen würde. Welche Sterne aber zur Nachbarschaft der Sonne gehören, war bis weit ins 19. Jahrhundert noch unbekannt. Zwar leuchten am Himmel manche Sterne heller als andere, aber ob die uns besonders nah sind oder trotz immenser Entfernung einfach besonders stark leuchten, war ein lange unlösbares Rätsel.
Das Rätsel über unsere kosmische Nachbarschaft gelöst. Zwischen 1989 und 1993 lieferte der Satellit Hipparcos zunächst genaue Entfernungen für rund 100.000 Sterne. Doch dann startete startete im Dezember 2013 der ESA-Satellit Gaia, der die bis dahin existierenden Sternenkataloge weit hinter sich lassen sollte. Zwei Teleskope des Satelliten tasten ständig den Himmel ab und übertragen das Licht jedes einzelnen Sternes auf hochempfindliche CCD-Chips. Gaia kann messen, wohin sich ein Stern wie schnell auf seiner Bahn ums Zentrum der Milchstraße bewegt, ob er angeschubst durch die Schwerkraft unsichtbarer Begleiter hin und her schwingt und wie die stellaren Atmosphären chemisch zusammengesetzt sind. Am 3. Dezember 2020 wurde nun die nächste Version des Katalogs veröffentlicht, das Gaia Early Data Release 3, das nun Daten zu 1.811.709.771 kosmischen Lichtpunkten enthält.
In unserem Podcast sprechen wir mit vier Astronomïnnen über ihre Forschungsarbeit im Zeitalter des Gaia-Katalogs: Stefan Jordan und Emily Hunt von der Universität Heidelberg, Boris Gänsicke von der University of Warwick in England und Thomas Kupfer von der Texas Tech University in den USA.
Musik: Cepeheid, CC-BY 3.0 Stellardrone
Titelbild: ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Brown, S. Jordan, T. Roegiers, X. Luria, E. Masana, T. Prusti and A. Moitinho
Links und mehr zur Gaia-Revolution gibt es hier.
Die meisten Wissenschaftler treibt der Wille an, die Welt zu verbessern und den menschlichen Horizont zu erweitern. Was ist aber, wenn die eigene Arbeit dazu führt, dass sich der Zustand der Erde verschlechtert? In sechs Kommentaren in einer Sonderausgabe des Magazins Nature Astronomy machten sich nun etliche Astronomen sehr selbstkritische Gedanken darüber, wie sie mit ihrer eigenen Arbeit zur Klimakrise beitragen.
Karl Urban sprach für diesen Podcast mit Astronomin Victoria Grinberg, dem Astronomen Knud Jahnke und der Umweltphysikerin Kira Rehfeld, die ihre Kollegen derzeit aufrütteln wollen, indem sie den ökologischen Fußabdruck ihrer Arbeit für das Klima sichtbar gemacht oder indem sie die Folgen einer wärmeren Erde für die astronomische Beobachtung selbst berechnet haben.
Musik: Mike Leite
Titelbild: CC-BY 2.0 Mbtrama / Flickr
Links und mehr zu Waldbränden rund um astronomische Observatorien gibt es hier.
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Blaubeuren liegt am Fuß der Schwäbischen Alb, knapp 20 Kilometer westlich von Ulm. Hier grub der Telekom-Mitarbeiter Hansjörg Bayer 1989 einen 30 Kilogramm schweren, aber sonst erstaunlich kompakten Stein aus. Er lag jahrelang in seinem Garten. Beinahe hätte er ihn entsorgt. Am Ende entschied sich Bayer, ihn von Experten untersuchen zu lassen. Erst da wurde klar: Es handelt es sich um den größten Steinmeteoriten, der bislang in Deutschland gefunden worden ist.
Wir sprechen mit Dieter Heinlein, der für das Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt Meteoriten untersucht. Im Januar kam der Fund aus Blaubeuren zu ihm. Und zu Beginn war er nicht sicher, ob der ungewöhnlich große Brocken überhaupt ein Meteorit ist.
Bild: Gabriele Heinlein / DLR
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Methan gilt als Hinweis für Leben auf dem Mars. Seit Jahrzehnten wurde es immer wieder nachgewiesen. Eine neue spezialisierte Sonde findet das Gas allerdings nicht. Wieviel Wunschdenken um ungenaue Messwerte war im Spiel?
Musik: CC-BY 3.0 Mike Leite
Bild: NASA
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Without satellites, modern warfare can no longer work. More and more countries are therefore developing weapons to take down enemy satellites in the event of war. But this development potentially has a high price.
Karl Urban talks to Daniel Porras who works in Geneva in Switzerland as a researcher at the United Nations Institute for Disarmament Research. Daniel published a paper in 2006. It is called The Common Heritage of Outer Space: Equal Benefits for most of Mankind. But more recently he is more and more involved with the severity of current space diplomacy.
Picture: Wikimedia Commons
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Die Astronomie sticht unter den Wissenschaften hervor, weil sie alle Menschen aller Kulturen wohl gleichermaßen berührt: Jeder Mensch kann in einer sternenklaren Nacht an den Himmel blicken und die Gestirne auf sich wirken lassen. Doch die Menschheit verändert den Nachthimmel und das wohl mit zunehmendem Tempo: Die Astronomengemeinde warnt derzeit jedenfalls, dass das Ende des Nachthimmels wie wir ihn bisher kannten, bevorsteht. Und das selbst, wenn die Lichter der Stadt fern und die Sicht gut ist.
Die erste Megakonstellation heißt Starlink: Das Unternehmen SpaceX möchte 12000 Satelliten ins All bringen, vielleicht sogar noch viel mehr. Karl Urban erzählt was dran ist an den Sorgen der Astronomen.
Episodenbild: Victoria Girgis/Lowell Observatory
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Wer einmal in seinem Leben in einer richtig klaren Nacht durch ein richtig gutes Teleskop schauen konnte, den dürfte diese Erfahrung nicht mehr loslassen. Die Sterne, Planeten, Gasnebel oder Galaxien sind überwältigend schön. Doch wie wirkt der Sternenhimmel eigentlich auf Menschen, die ihn nie in ihrem Leben gesehen haben?
Karl Urban und Felicitas Mokler haben in Karlsruhe den Informatiker und Hobbyastronomen Gerhard Jaworek besucht, der seit seiner Geburt blind ist, der über seine Erfahrungen ein Buch geschrieben hat und der regelmäßig Jugendliche mit seiner rein akustischen Faszination der Sterne in den Bann zieht.
AstroGeo ist ein Projekt der Weltraumreporter und entsteht dank eurer Spenden und Abo-Beiträge. Seid dabei: Weltraumreporter.de.
Es war vom ersten Moment an ein ikonisches Bild: Am 10. April 2019 präsentierten Forscher die erste Aufnahme eines Schwarzen Loches. Es befindet sich 53 Millionen Lichtjahre von uns entfernt im Zentrum der Galaxie M87. Es eröffnete ein neues Fenster für die Astronomie, die diesen exotischen Typ einer Sternenleiche erstmals direkt beobachten konnten, dank eines weltumspannenden Verbundes gekoppelter Radioteleskope.
Mit diesem wissenschaftlichen Ereignis war auch ein enormes Medienereignis verbunden: Sechs wissenschaftliche Studien erschienen zeitgleich, ohne dass Journalisten sich vorab ein Bild machen konnten und den zu erwartenden Hype einordnen konnten. Karl Urban unterhält sich mit der Wissenschaftsjournalistin (und Astrophysikerin) Felicitas Mokler darüber, was das Bild bedeutet – und wie es in die Welt kam.
Dieser Podcast geht wie gehabt weiter, allerdings unter einem neuen Banner: AstroGeo ist von nun an ein Podcast der Weltraumreporter.
366 Tage lang verbrachte Christiane Heinicke wie auf dem Mars: Sie lebte und arbeitete unter einer Kuppel aus Kunststoff und ging nur in einem Schutzanzug nach draußen. Über ein Jahr lebte sie mit fünf anderen Analogastronautinnen und -astronauten zusammen. Eine Nachricht zum Rest der Welt brauchte wie auf dem Mars ungefähr 20 Minuten – eine Antwort genauso lange.
Obwohl das Habitat nur auf einem Vulkan von Hawaii lag, dürften der emotionale und soziale Stress ähnlich wie auf dem Mars gewesen sein. Die Geophysikerin spricht über ihre Erlebnisse während des Jahres in Isolation – und wie sie heute an der Universität Bremen selbst Habitate entwirft.
Bild: CC-BY-SA 3.0 Brian Shiro
Die Raumfahrt ist im Umbruch. Die Internationale Raumstation (ISS) könnte schon in einigen Jahren an private Betreiber übergeben oder sogar auf dem Grund des Pazifiks landen. Daher bereitet sich Matthias Maurer derzeit auf weit mehr vor als nur auf seinen ersten Flug zur ISS. Erst kürzlich in das europäische Astronautenchorps berufen, beschäftigt er sich längst mit den Anforderungen neuer Bündnisse. Der gebürtige Saarländer ist es gewohnt, sich mit verschiedenen Kulturen zu beschäftigen. Er spricht fünf Sprachen, neben Russisch neuerdings auch Chinesisch. Und er absolvierte im Sommer 2017 mit seiner Kollegin Samantha Christoferetti ein Überlebenstraining in China, als erste ausländische Raumfahrer überhaupt.
Bild: ESA
Das Interview ist als Teil des AstroGeo Podcast frei verfügbar. Das Transkript und weiteres Zusatzmaterial ist bei Riffreporter für 2,49 € zu erwerben. Der Kauf unterstützt mich bei meiner weiteren Recherche.
Sie sind erhaben, gewaltig und anziehend: Die Bergkette in der Mitte Europas war lange das bestuntersuchte Hochgebirge der Welt – zum Schaden vieler Geologen. Denn lange hielten sie die Alpen für einen Archetyp eines Gebirges. Als aber Geologen aber im Laufe der Geschichte zunehmend die Welt bereisten, stellten sie das genaue Gegenteil fest: Die Alpen sind ein geologischer Sonderfall unter den Gebirgen. Wie genau sie entstanden, konnten die Forscher erst in der zweiten Hälfte des 20. Jahrhunderts richtig beschreiben.
In dieser Folge erzählt David Bressan von der geologischen Forschungsgeschichte der Alpen, die voll von Irrungen und Irrtümern ist. Das Gespräch entstand in Südtirol in Norditalien, wo David zu Hause ist.
Seit den ersten Tagen der Raumfahrt scheint das All ein friedlicher Ort zu sein: Satelliten kreisen, um die Erde zu untersuchen, Daten zu übertragen – oder zu spionieren. Aber bewaffnete Konflikte gab es bis heute nicht.
Tatsächlich aber verfolgten die ersten Weltraummächte – USA und UdSSR – zu Beginn auch aggressive Strategien und entwickelten Waffen für die Umlaufbahnen. Mit dem Weltraumvertrag von 1967 und dem atomaren Gleichgewicht wurden solche Entwicklungen allerdings gestoppt, bevor sie US-Präsident Ronald Reagan schließlich wieder aufnehmen ließ.
Musik: Take It Apart And Start All Over Again, CC-BY-SA-NC junior85
Bild: Ronald C. Wittmann / public domain
Am 26. April 1986 verteilt sich von Tschernobyl in der heutigen Ukraine radioaktives Material über große Teile Europas. Obwohl bei uns vergleichsweise wenig Nuklide ankommen, sind die Folgen bis heute messbar und beeinträchtigen teilweise sogar Lebensmittel aus den Wäldern Deutschlands.
In dieser Folge unterhält sich Gastmoderator Faldrian mit Karl Urban über die Auswirkungen von Tschernobyl. Die waren zwar besonders für die Landwirtschaft in Deutschland kein Thema mehr, aber in den Wäldern gibt es bis heute gegentlich erhebliche Belastungen. Bei Wildschweinen scheinen die Messwerte aus unbekannten Gründen sogar zuzunehmen.
Bild: gemeinfrei / Bernie / Wikimedia Commons
Am 14. März 2016 startete der ExoMars Trace Gas Orbiter vom russischen Weltraumbahnhof Baikonur. ExoMars ist die erste Marssonde Europas seit 13 Jahren. Im Sommer 2003 startete die erste Sonde Mars Express – und seitdem ist viel passiert. Heute wird der Rote Planeten von sieben aktiven Sonden bevölkert.
Ich habe mich daher zum Start im Europäischen Weltraumkontrollzentrum umgehört: Was genau soll die achte Mission am Mars noch tun? Wie gut läuft die Zusammenarbeit mit der russischen Raumfahrtagentur Roskosmos? Und wie steht es um den zweiten Teil der Mission – den ExoMars Rover, der 2018 starten soll?
Korrektur: Anders als im Podcast gesagt, ist der mitfliegende Testlander Schiaparelli insgesamt 600 kg schwer.
Bild: Public Domain/Trent Schindler/NASA
Erdbeben sind unbarmherzige Naturgewalten, wenn sie stark sind. Schwache Erdbeben sind eher von akademischem Interesse, könnte man meinen. Ich bin zu Besuch in einer universitären Erdbebenwarte, die tief im Schwarzwald steht und zu den genausten der Welt gehört: Das Black Forest Observatory (BFO), eine Einrichtung der Universität Stuttgart und des Karlsruher Instituts für Technologie.
Was die Geophysiker hier in ihren Seismogrammen sehen, erklärt Rudolf Widmer-Schnidrig. Im zweiten Teil gehen wir dann in den Messstollen hinein.
Episodenbild: CC0 / Maxpixel
Der heilige Gral für die Marsforschung ist es, Leben auf dem Mars zu finden. Jedenfalls ist das die öffentliche Wahrnehmung – und so werden auch Missionen begründet, die zum Mars geschickt werden. Realistischerweise geht es dabei um Spuren längst ausgestorbenen Lebens. Wobei es heute immer noch unverstandene Prozesse gibt, die sogar für lebendige Organismen in der Gegenwart sprechen. Deshalb dröselt diese Episode auf: Was müsste man tun, um endlich handfest organische Verbindungen und Leben auf dem Mars nachzuweisen?
Dies ist der dritte und letzt Teil einer Podcastreihe. Er liefert Hintergrund zu meiner Sendung Rot und tot (Manuskript / MP3), die am 12. Juli im Deutschlandfunk gesendet wurde. Zur Wort kommen die Marsforscher Jean-Pierre Bibring, Jorge Vago, Fred Goesmann und Michael Carr. Mehr: Teil 1: Die Anfänge, Teil 2: Die Gegenwart.
Musik: NASA / John Beck-Hofmann, 7 Minutes of Terror
Bild: ESA
Der Mars hatte einmal Wasser – das haben Raumsonden vielfach bewiesen. Dafür sprechen gigantische Flusstäler, aus dem Orbit nachgewiesene Minerale und die Messdaten der Rover auf der Oberfläche. Aber wieviel Wasser es wirklich gab, ist bis heute umstritten. Manche Forscher halten einen riesigen Nordozean für möglich – andere glauben lediglich an vereinzelte Pfützen. Und diese Frage scheint bis heute offen.
Dies ist Teil 2 einer dreiteiligen Reihe. Sie liefert Hintergrund zu meiner Sendung Rot und tot (Manuskript / MP3), die am 12. Juli im Deutschlandfunk gesendet wurde. Zur Wort kommen die Marsforscher Michael Carr, James Head, Harald Hiesinger und Giovanni Leone. Mehr: Teil 1: Die Anfänge, Teil 3: Die Zukunft.
Musik: NASA / John Beck-Hofmann, 7 Minutes of Terror
Bild: CC-BY-SA 3.0 Ittiz / Wikimedia Commons)
Der Mars fasziniert die Menschen seit Jahrhunderten. Lange Zeit waren die sogar überzeugt, dass hier (wie auch auf anderen Welten) Leben existieren müsste. Mittlerweile hat sich das geändert: Forscher hoffen, dass sich Leben in extremen Nischen gehalten hat – wenn es überhaupt jemals dort war.
Dies ist Teil 1 einer dreiteiligen Reihe. Sie liefert Hintergrund zu meiner Sendung Rot und tot (Manuskript / MP3), die am 12. Juli im Deutschlandfunk gesendet wurde. Zur Wort kommen die Marsforscher Jean-Pierre Bibring, Michael Carr, James Head und Gerhard Neukum. Mehr: Teil 2: Die Gegenwart, Teil 3: Die Zukunft.
Musik: NASA / John Beck-Hofmann, 7 Minutes of Terror
Bild: gemeinfrei
Seit über acht Monaten kreist Rosetta um den Kometen 67P/Tschurjumow-Gerasimenko. An Bord befinden sich zehn Instrumente, unter denen eines hervorsticht: Die Kamera OSIRIS füllt fast ein Viertel der wissenschaftlichen Nutzlast aus. Die hochaufgelösten Bilder von OSIRIS gehören wohl zu den öffentlich gefragtesten Daten von Rosetta.
Ich habe darüber mit Holger Sierks gesprochen, dem Kamerachef von OSIRIS am Max-Planck-Institut für Sonnensystemforschung in Göttingen. Das OSIRIS-Team umfasst heute 83 Personen, die europaweit über neun Institute in vielen Ländern verteilt sind. In der ersten Hälfte sprechen wir über die Kamera, wie sie funktioniert, und wie aufwendig es ist, anhand der Bilder zu forschen. Im zweiten Teil sprechen wir über die vielen tausend Bilder, die OSIRIS bis heute übermittelt hat und die bisher zu 99% beim Max-Planck-Institut liegen. Zuletzt geht es um offene Forschung – und die Schwierigkeiten, die sich dabei ergeben könnten.
Transparenz-Hinweis: Der Autor dieses Podcasts war im Juli 2014 Mitautor eines offenen Briefs an Holger Sierks und andere Wissenschaftler hinter der Rosetta-Mission. Darin wurde gefordert, mehr Bilder der Mission sofort öffentlich freizugeben.
Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – CC BY-SA 4.0
Vor fünf Monaten landete Philae auf einem Kometen, gerade 2 Tage, 7 Minuten und 56 Minuten später war alles vorbei. Philae hat in dieser Zeit viele Daten gesammelt. – Aber wo genau der Lander (nach zwei ungewollten Sprüngen) zum Stehen kam, ist bis heute ungeklärt.
Ich sprach in Wien mit zwei Forschern darüber, inwiefern Philaes Position etwas genauer bestimmt werden konnte. Karl-Heinz Glaßmeier nutzte dazu ein im Herbst mit Rosetta entdecktes Signal, das die Magnetometer an Bord beider Sonden aufgefangen hatten. Und das diente jetzt als Trägersignal, um wie ein Magnetkompass Philaes Lage im Raum etwas genauer zu bestimmen. Tatsächlich geht es dabei aber auch um plasmaphysikalische Effekte im Kometenumfeld.
Im Anschluss folgt ein zweites Interview mit Stefan Ulamec, dem Projektmanager von Philae. Er erzählt vom Stand bei der Suche nach Philae. Und er berichtet, wann genau der Lander vielleicht wegen der immer stärkeren Sonnenstrahlung aufwachen könnte.
Grafik: ESA
Geologen sind Menschen, die Steine verstehen. Aber über lange Zeit verstanden Forscher nicht ansatzweise, wie die feste Erde entstanden ist. Sie rätselten über die Rolle der Vulkane. Sie wunderten sich über Fossilien von Meerestieren hoch in den Bergen. Vor allem aber mussten sie sich nach der Bibel richten, denn die Entstehung der Welt war klar die Domäne der Kirche.
Ich wage mit David Bressan einen Spaziergang über die verschlungenen Pfade der Geschichte der Geologie. David ist freiberuflicher Geologe aus Südtirol und bloggt in seiner Freizeit über die Geschichte der Geologie – und das dreisprachig.
Titelbild: public domain / Wikimedia Commons / ‚Mr. Grey‘ in Crispin Tickell’s book ‚Mary Anning of Lyme Regis‘ (1996)
Der Mars und die Erde sind keine Zwillinge. Während es dort nur trockene Wüsten und eine ungewöhnliche dünne Atmosphäre gibt, ist die Erde bewohnbar. Umso erstaunlicher war der Fund von Methangas in der Atmosphäre des Mars, der gerade zehn Jahre alt ist. Immerhin entweicht Methan auf der Erde neben Vulkanen auch vielen Mikroorganismen, Tieren und sogar Pflanzen. Wo genau das Marsmethan herstammt, ist bislang noch umstritten. Ein neuer Fund hat die Diskussion allerdings gerade weiter angeheizt: Der NASA-Rover Curiosity beobachtete einen rasanten Anstieg des Gases.
Ich habe deshalb das Thema mit einem Forscher diskutiert, der sich damit auskennt: Frank Keppler ist frisch berufener Heisenberg-Professor am Institut für Geowissenschaften der Universität Heidelberg. Er hat vor einigen Jahren die Methanemissionen von Pflanzen entdeckt und damit weltweit für Aufregung gesorgt. Er forscht auch zu Methanquellen auf dem Mars. Und er ist sehr vorsichtig, wenn es darum geht, über Leben auf dem Roten Planeten zu spekulieren.
Titelbild: NASA JPL / Ken Kremer / Marco di Lorenzo)
Vier Monate umkreist Rosetta nun Tschurjumow-Gerasimenko. Die erste Kometenlandung ist Geschichte, der Lander Philae eingeschlafen. Die Muttersonde kreist aber weiter – und wird das wohl noch über ein Jahr lang tun. Nun gibt es erste handfeste Ergebnisse von ihr: Das Massenspektrometer ROSINA an Bord von Rosetta hat so etwas wie den Fingerabdruck des Wassers gemessen. Das Resultat scheint überraschend: Das Wasser der Erde kam kaum von einem Kometen wie Tschuri, vermutlich spielten Kometen als Wasserlieferanten überhaupt keine Rolle.
Um die neuen Daten zu verstehen, habe ich mit Kathrin Altwegg gesprochen. Sie ist Professorin in der Abteilung für Weltraumforschung und Planetologie der Universität Bern. Und sie ist verantwortlich für ROSINA: Das Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Es besteht aus zwei Massenspektrometern und einem Gasdrucksensor.
Titelbild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – CC BY-SA 4.0
Am 12. November 2014 landete erstmals in der Geschichte eine Raumsonde auf einem Kometen: Philae. Nach zwei ungewollten Hüpfern stand Philae – und begann wissenschaftliche Daten der unbekannten Kometenwelt zu sammeln. Leider arbeitete die Sonde nur 56 Stunden – danach war die Hauptbatterie an Bord erschöpft.
Sechs Tage später traf ich mich mit Fred Goesmann für ein Interview: Er ist leitender Wissenschaftler für das Instrument COSAC auf Philae (Cometary Sampling and Composition Experiment). Es ist so etwas wie die Nase der Sonde: Sie kann die vielen organischen Verbindungen im Kometenmaterial untersuchen, von denen wir längst noch nicht alle kennen. COSAC ist somit auch eines der komplexesten Instrumente an Bord – samt einem Gaschromatographen und einem Massenspektrometer, wofür zuvor das Material in winzigen Öfchen gekocht werden muss.
Fred Goesmann erzählt, wie er die kurze Missionszeit von Philae erlebte, was er in seinen (längst noch nicht fertig ausgewerteten) Daten erwartet – und ob Philae vielleicht wieder aufwachen könnte.
Titelbild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Der Mensch kommt nicht ohne sie aus. Menschliche Kultur ohne sie wäre undenkbar. Jeder ist auf sie angewiesen – aber niemand will die Industrie in seinem Vorgarten haben: Es geht um Rohstoffe.
Ein weites Thema, das in dieser Folge von Gunnar Ries (Mineraloge) und Karl Urban (Geologe) ergründet wird, heruntergekocht und moderiert von Faldrian.
Titelbild: Andreas Feininger / Library of Congress Prints and Photographs Division, Farm Security Administration – Office of War Information Collection / Wikimedia Commons / gemeinfrei
[1] A. Whitmore: The emperors new clothes: Sustainable mining?, Journal of Cleaner Mining, 2006
[2] P. Laznicka: Giant Metallic Deposits: Future Sources of Industrial Metals, Springer, 2010
Sie heißen Eyjafjallajökull, Grímsvötn und momentan Bárðarbunga: Isländische Vulkane sind spätestens nach der Aschewolke von 2010 in aller Munde, wenn sie denn aussprechbar sind. Wir wissen mittlerweile: Island ist die Insel der Vulkane, die jederzeit ausbrechen können und die nicht nur das Leben einiger skandinavischer Bauern sondern von uns allen beeinflussen können.
Am 28. August 2014 begann der Bárðarbunga, viel Lava in das Vorland des Gletschers Vatnajökull zu schicken. Das nehme ich zum Anlass, mit Tobias Dürig zu sprechen. Der Würzburger Geophysiker arbeitet gerade an der Universität Island am europäischen Forschungsprojekt FutureVolc, das Ausbrüche zukünftig berechenbarer machen soll. Tobias beobachtet deshalb auch den aktuellen Ausbruch.
Zuletzt eine Empfehlung: Nebenan im Blog von Christian gibt es derzeit tägliche Infos zum aktuellen Ausbruch und der Ausbreitung des neuen Lavafelds, darunter auch eindrucksvolle Videos.
Titelbild: CC-BY 2.0 Sverrir Thorolfsson
Der Weltraum ist gefährlich und eine Reise dorthin ist riskant. Das war so, als der erste Mensch ins All startete – und es ist bis heute so. Selbst unbemannte Satelliten und Raumsonden sind ständig bedroht: Extreme energiereiche Teilchen von der Sonne und tief aus dem Universum können immense Schäden anrichten. Elektronische Bauteile müssen entsprechend gehärtet werden, um unter dem Teilchenstrom nicht schnell Schaden zu nehmen.
Dabei ist es bis heute aber nicht möglich, in irdischen Labors die kosmische Strahlung korrekt nachzubilden. Zwar testen Raumfahrtingenieure die Bordcomputer und Sensoren von Satelliten ausgiebig. Kosmische Strahlung wirklich im Labor zu erzeugen, ist aber nicht möglich.
Darüber spreche mit Oliver Karger, Doktorand am Institut für Experimentalphysik der Universität Hamburg. Er arbeitet an einer neuen Methode, kosmische Strahlung mit Lasern im Labor nachzubilden. Und er will dazu beitragen, dass Satelliten und Sonden bald deutlich realistischer getestet werden können, um Missionen eines Tages vielleicht zuverlässiger und langlebiger zu machen.
Titelbild: NASA Goddard Spaceflight Center
Millionen Objekte bevölkern unser Sonnensystem: von winzigen Asteroiden über mittelgroße Gesteinsplaneten bis zu den gewaltigen Gasriesen. All das ist vor langer Zeit aus einer Urwolke entstanden und diese Einsicht ist schon über 200 Jahre alt. In den letzten Jahrzehnten haben Forscher aber gelernt, aus der Chemie von Meteoriten deutlich mehr herauszulesen. Die Geochemie eröffnet uns einen tiefen Blick in die Geschichte des Sonnensystems – bis zur Entstehung des Lebens.
Mit Mario Trieloff von der Universität Heidelberg wage ich einen Ritt durch die letzten 4,6 Milliarden Jahre, alle Körper des Sonnensystems und die Innereien der Erde. Er ist Professor am Institut für Geowissenschaften und leitet die Forschungsgruppe Geo- und Kosmochemie.
Grafik: NASA Jet Propulsion Laboratory / California Institute of Technology
Rosetta ist ein Novum: Es ist der erste Versuch, eine Raumsonde um einen Kometen kreisen zu lassen, um schließlich einen Lander auf ihm abzusetzen. Rosetta ist auch einer der ersten Versuche Europas, in der Raumfahrt mal alleine etwas ganz Neues zu versuchen.
Was dabei passieren kann: Es passieren unvorhergesehene Dinge. Etwa wird Rosettas Zielkomet 67P/Tschurjumov-Gerasimenko wohl schon etwas früher aktiv als geglaubt. Er pustet also schon eher Gas und Staubpartikel ins All, als Vorstufe zu seinem Schweif.
Das ist eigentlich keine Neuigkeit: Im August 2013 habe ich darüber bereits mit Colin Snodgrass und Hermann Böhnhardt vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau gesprochen. Das volle Interview ist aber weiter aktuell – gerade so kurz nach Rosettas beendetem Winterschlaf.
Titelbild: C. Snodgrass/ESO/ESA
Gold ist ein aufgeladener Rohstoff: Seit Menschheitsgedenken wird ihm ein hoher Wert zugedacht. Er war Zahlungsmittel und Grundstoff der Schmuckhersteller zwischen Urgeschichte und heute. Trotzdem interessiert sich kaum einer der Kunden heutiger Juweliere, unter welch katastrophalen Bedingungen das Gold oft abgebaut wird.
Das dachte sich auch Guya Merkle, die mit Anfang 20 die Schmuckfirma ihrer Eltern übernahm. Sie versucht seitdem, mehr Aufmerksamkeit auf den Goldbergbau zu lenken: Sie hat Initiativen für fair gehandeltes Gold angeschoben und eine Stiftung gegründet.
Titelbild: Chilcutte / Pixabay
Die Vereinigten Staaten sind die größte Wissenschaftsnation der Welt. Der Shutdown im US-Haushaltsstreit legt nun nicht nur viele Ämter lahm, sondern auch Teile der Forschungslandschaft.
Daher habe ich kurz mit der Geologin Professor Dawn Sumner von der Universität von Kalifornien in Davis gesprochen. Sie steckt in zwei wichtigen Forschungsprojekten: Sie ist seit Jahren in diversen Teams um den Rover Curiosity aktiv. Sie half bei der Suche der Landestelle und beteiligt sich heute als Langzeitplanerin. Sie arbeitet auch maßgeblich an der geologischen Kartierung des Galekraters mit. Außerdem hat sie eine Expedition in die Antarktis vorbereitet, die eigentlich jetzt beginnen sollte.
Ich habe sie über ihre Arbeit befragt und sie um eine Einschätzung der US-Wissenschaft gebeten, die recht düster ausfällt.
Titelbild: Bild: CC-BY-SA 3.0 Hans Haase / Wikimedia Commons
Vor genau einem Jahr landete Curiosity auf dem Mars: Der schwerste, teuerste und komplexeste Rover, den Menschen jemals auf einen anderen Himmelskörper geschickt haben. Auch das Preisschild der Mission ist auffällig: Mit 2,5 Milliarden US-Dollar liegt sie bei einem Vielfachen gewöhnlicher Raumsonden.
Wir nehmen das zum Anlass, auf die einjährige Missionszeit zurückzublicken: Was passierte während Curiositys Landung und danach? Wohin führte die Reise des gutmotorisierten Gefährts? Warum war die Fahrt bisher eher kurz? Und was sind die kommenden Ziele? All das klärt Karl Urban mit seinem Gastmoderator Faldrian.
Titelbild: NASA, JPL-Caltech, MSSS – Panorama von Andrew Bodrov)
Ist es dreckig, gefährlich und unverantwortlich? Oder ist es Garant für zukünftigen Wohlstand? Wenn es um unkonventionell gefördertes Schiefergas mittels Fracking geht, stehen diese Fragestellungen unversöhnlich gegeneinander.
Obwohl Fracking in aller Munde ist, konzentriert sich die öffentliche Kritik dabei meist auf die Fracking-Flüssigkeit, darin enthaltene Chemikalien und die befürchtete Gefährdung des Grundwassers.
In dieser Sendung sprechen die beiden Wissenschaftsjournalisten Lars Fischer (Fischblog) und Karl Urban (Pikarl) über tiefer liegende Aspekte des Frackings: Was ist das für Wasser, das in der Lagerstätte steckt? Wohin wird es hinterher entsorgt? Ist genügend Platz in der Tiefe für die vielen Bohrungen? Und: wie realistisch sind die Ressourcen, die angeblich noch in der Tiefe schlummern?
Titelbild: NASA Earth Observatory/NOAA NGDC
Erdbeben gehören zu den verheerendsten Naturkatastrophen überhaupt. Sie fordern weltweit viele Opfer, auch weil sie nicht genau vorhergesagt werden können. Dabei ist nicht immer die Natur mit im Spiel: Es gibt auch menschgemachte Erdbeben. In dieser Sendung spricht Gastmoderator Faldrian mit Karl Urban über dessen Sicht auf menschgemachte Erdbeben.
Es geht zunächst um die Ursachen gewöhnlicher Erdbeben. Dann sprechen wir über die Eingriffe des Menschen, die Erdbeben anstoßen oder sogar auslösen können.
Titelbild: CC-BY-SA 3.0 Anonymus / Sebastian Münster / Wikimedia Commons
En liten tjänst av I'm With Friends. Finns även på engelska.